Haben Sie ein Teleskop? Und ein bisschen Zeit?

Dann forschen Sie doch mit! Derzeit gibt es gleich zwei Möglichkeiten, sich aktiv in die Forschung auf dem Gebiet der Astronomie einzubringen. Die erste betrifft die ESA-Mission „Gaia“:

„Follow-up opportunity of a rare microlensing event: (…) In July and August 2016 the first microlensing events were detected. Microlensing happens when light rays from a distant star (we call this the source) are bent by the space-time curvature of an object (e.g. a star, a planet, or a black hole), lying exactly between the observer and the distant star. This hitherto unseen object is called the lens, and being closer to us, and moving faster across the sky, leads to a sometimes dramatic increase (and then decrease) in the brightness of the background source.
(…)
… the model predicts another sharp rise in brightness which is expected to happen in the first or second week of November 2016. We are currently waiting for the final predicted re-brightening, which will help solve the puzzle of the exact nature of the components of the binary system. Gaia16aye is the perfect example of the importance of ground-based follow-up of Gaia Alerts, carried out by professionals but also by amateur astronomers, which can make a huge scientific impact. Indeed, it would have been quite difficult to confirm Gaia16aye as a microlensing event without the extra follow-up, and certainly the binary nature of the lens, and constraints on the system components would be impossible.

Gaia16aye is reasonably bright (currently of about 13th mag in I and 14th mag in V), and hence is observable even by some smaller telescopes operated by schools and amateur astronomers. Please contact Lukasz Wyrzykowski if you would like to get involved and collect more data on this event, or if you already have and would like to share your data with us.“

Quelle: http://www.cosmos.esa.int/web/gaia/IoW_20161027

Die zweite Einladung zur „Citizen Science“ kommt von der japanischen Raumfahrtagentur JAXA und betrifft deren Venus-Mission „Akatsuki“ im Zeitraum Oktober 2016 bis Januar 2017:

We are delighted to announce a new website devoted to the collaboration and coordination between JAXA’s AKATSUKI mission to Venus and planetary ground-based observers. Since its arrival to Venus in December 2015, the japanese orbiter AKATSUKI has been performing regular observations towards its main goal: characterizing the atmospheric circulation of Venus. (…) In the AKATSUKI team we are aware of the high quality of present Venus observations from both professional and amateur observers, and we would like to invite you all to register in our website and join our next campaigns of coordinated observations of Venus. Observers can contribute directly to the mission by sharing your own images, spectra and other derived products, thus having the chance to participate as co-authors in those papers where donated ground-based data is decided to have quality enough to be used along with AKATSUKI data. The website can be found here: https://akatsuki.matsue-ct.jp/
Useful information about the AKATSUKI observations day-to-day is found here: https://akatsuki.matsue-ct.jp/?q=node/20
Summary of wavelengths of interest to observe Venus: https://akatsuki.matsue-ct.jp/sites/default/files/info/Levels_Sensed_Wavelengths_SIMPLER.png
Instructions to donate images of Venus (temporal until system of uploading is ready): https://akatsuki.matsue-ct.jp/…/HOWTO_Submit_Venus_Images.pdf

Please, help us to distribute this information through other forums of ground-based observers, and do not hesitate to get in touch with us through our official mail addresses: coordinatewithakatsuki@gmail.com coordinate@akatsuki.matsue-ct.jp

Quelle: https://www.facebook.com/permalink.php?story_fbid=1339379642763154&id=124515220920764

Viel Spaß, viel Erfolg und Clear Skies!

Curiosity killed the… microbes?

Tantalos hätte seine helle Freude an dieser Meldung: Da hat man auf dem Mars Regionen entdeckt, die eventuell Spuren von Leben beherbergen könnten – und dann darf der Rover Curiosity nicht mal in deren Nähe.

Die Rede ist von den sogenannten Recurring Slope Lineae (RSL), zu Deutsch etwa „wiederkehrende Hanglinien“, die man seit ca. 5 Jahren auf dem Mars beobachtet. Das sind, wie der Name schon andeutet, dunkle Streifen an steilen Hängen auf dem Mars, welche periodisch verblassen und dann wiederkehren; zum Teil Hunderte von Metern lang und immerhin einige Meter breit. Die meisten dieser RSL wurden im Valles Marineris entdeckt. Insgesamt zählte man marsweit allerdings schon über 450. Die Forscher vermuten unter anderem, dass es sich dabei um Wasser handelt, welches bei Wärme taut und die Hänge hinab sickert, um bei Kälte wieder zu gefrieren. Es kommt eventuell aber auch Wasserdampf aus der Atmosphäre als Ursache für das Phänomen in Frage.

Sei es, dass man frühere Wasservorkommen nachweisen kann, sei es, dass sie aktuell noch vorhanden sind: Wasser in sämtlichen Aggregatzuständen ist bekanntlich ein entscheidendes Kriterium bei der Suche nach Leben oder dessen Überresten auf anderen Himmelskörpern. Alles prima, könnte man also denken. Wo ist denn bitte das Problem? Hier ein vielversprechendes Gebiet, dort ein Rover, der es analysieren könnte. Da kann man doch gleich mal graben gehen!

Ganz so einfach ist es aber leider nicht. Ähnlich wie bei Star Treks „Oberster Direktive“ verbieten auch irdische Planetary-Protection Protocols, abgestuft nach Ziel und Art der Mission, Leben von der Erde auf anderen Himmelsköpern dauerhaft einzuführen, dortiges Leben zu verändern, zu stören oder gar zu vernichten. Genau das ist aber leider die Gefahr bei Curiosity: Er wurde seinerzeit nur teilweise sterilisiert. Vollständiges Sterilisieren hätte Strahlung erfordert, welche die Elektronik irreparabel beschädigt. Dass er nicht in die Nähe der Lineae darf, war natürlich von vornherein klar. Dass er sich aber, wie geschehen, unverhofft dennoch in der Nähe von ein paar Dutzend zumindest potenzieller RSL wiederfinden würde, ahnte bei den Vorbereitungen für die Mission niemand.

Ob die von Curiosity fotografierten Streaks nun tatsächlich RSL sind, muss sich erst noch herausstellen. Wenn dies jedoch der Fall sein und sich in den RSL auch nur Spuren von Leben befinden sollten, wäre es möglich, dass der kleine irdische Rover die Gegend unabsichtlich kontaminiert. Dafür müsste er nicht einmal direkt auf den RSL herumfahren, sondern es reicht eventuell schon aus, wenn er sich in der Nähe befindet und der Wind in die falsche Richtung bläst.

Doch wie wahrscheinlich ist es, dass der Rover nach mittlerweile über vier Jahren auf dem Planeten überhaupt noch irdische Mikroben an sich hat? Wie wahrscheinlich wäre wiederum deren Übertragung durch zum Beispiel den Wind? Die Experten versuchen momentan, die Werte für diese Faktoren zu bestimmen und daraus die bestmögliche Strategie abzuleiten. Momentan erkundet Curiosity auf dem Weg zum Aeolis Mons die Murray formation, ca. 5 Kilometer von den nächsten potenziellen Streaks entfernt. Auf seinem bisher geplanten Kurs würde er ihnen allerdings bis auf zwei Kilometer nahe kommen. Möglicherweise also also zu nah für die Protection Protocols. Aus diesen Grund könnte es sein, dass der Rover demnächst zu einem Kurswechsel bzw. mehreren hundert Metern Umweg gezwungen ist. Diese Strecke klingt zunächst nach einem Klacks. Ein gesunder Mensch schafft das auch im Gebirge in relativ kurzer Zeit. Wenn man sich aber verdeutlich, dass Curiosity selbst auf topfebenen Strecken nur mit 0,14 km/h unterwegs ist und seit seiner Landung 2012 überhaupt erst ca. 14 Kilometer zurückgelegt hat, kann man sich vorstellen, dass die NASA alleine schon aus diesem Grund von einer Kursänderung nicht begeistert wäre.

Als sei das noch nicht genug, hat die Sache aber noch einen weiteren Haken: Nicht jeder Um- bzw. Ausweg kommt für den Rover in Frage. Leider kennt man derzeit nur eine wirklich gut befahrbare Strecke zu der Gruppe von Sulfatgesteinen, die er am Ende seiner Mission untersuchen soll. Denn mehr als 25% Steigung schafft Curiosity nicht, und seit einigen Jahren ist zudem eines seiner Räder beschädigt. Das stellt auf steinigen Pfaden ein weiteres Handicap dar.

Bei größtmöglichem Pech kann Curiosity sein eigentliches Ziel, auf das die Forscher seit Jahren hinfiebern, womöglich also überhaupt nicht mehr erreichen. Es bleibt wie immer spannend, und ich drücke die Daumen!

V3PO – Wie kommt man schneller an mehr Grünzeug?

Pflanzen an Bord eines Raumfahrzeugs sind die ideale Ergänzung zur menschlichen Besatzung. Sie produzieren Sauerstoff, sie bereiten Grauwasser auf, sie wirken ausgleichend auf die Psyche und liefern obendrein noch Nahrung. Allerdings hat die Sache einen kleinen Haken: Das Ansinnen, den gesamten benötigten Grünzeugvorrat für eine längere Mission mal eben von der Erde mit an Bord zu nehmen, ist nicht nur wegen des chronischen Platzmangels ziemlich illusorisch. Jedes Extrakilo kostet obendrein auch extra Treibstoff. Und was Essbares angeht, kann man zig Kisten frische Erdbeeren, Salat und Radieschen auch gar nicht so schnell essen wie der Inhalt verderben würde.

Bleibt also, Samen mitzunehmen und an Bord bei Adam und Eva mit dem Anbau zu beginnen. Das klingt nicht nur mühsam, sondern ist es auch. Es hat aber auch eine Reihe von Vorteilen. Samen nehmen – wenn man es nicht gerade auf Seychellenpalmen abgesehen hat – wenig Platz weg und sind relativ leicht. Sie sind auch nicht sonderlich anfällig für Transportschäden, sie können lange gelagert werden und bei der Auswahl so gemischt, dass beim Anbau möglichst große genetische Vielfalt gewährleistet ist. Allerdings dauert es seine Zeit, bis sie keimen und die Pflanzen voll ausgewachsen sind. Zeit, die man an Bord oft nicht hat. Obendrein können Faktoren wie Strahlung und der Wegfall der Schwerkraft zu Problemen bei der Vermehrung führen. So fielen in bisherigen Versuchen zum Beispiel Pollenschläuche unter Schwerelosigkeit um ca. 8% dünner aus als unter normalen Bedingungen. Eine Befruchtung und die anschließende Samenbildung wird damit erschwert, wenn nicht gar verhindert. [1] Strahlung ihrerseits schädigt ggf. das Erbgut, so dass erfolgreich gebildete Samen am Ende vielleicht gar nicht keimen oder unbrauchbare Pflanzen hervorbringen. [2]

V3PO

Es gibt jedoch eine Alternative bzw. Ergänzung zur generativen Vermehrung über Befruchtung und Samen: Die sogenannte vegetative Vermehrung, also den Anbau aus Stecklingen etc. Vegetative Vermehrung ist quasi das „What You See Is What You Get“ der Botanik: Ein abgetrennter Steckling hat zwangsläufig dieselben Erbanlagen und – gleiche Umweltbedingungen vorausgesetzt – dieselben Eigenschaften wie das Exemplar, von dem er stammt. Die aus ihm entstehende Pflanze ist ein Klon. Man steckt ihn in eine Nährlösung (oft reicht auch schon einfaches Wasser), wartet, bis er erste Wurzeln hat, pflanzt ihn dann an seinen Bestimmungsort und lässt ihn weiter wachsen. Fertig. Das hat wahrscheinlich jeder von uns schon mal irgendwann mit irgendeiner Pflanze gemacht. In vielen Fällen geht das ziemlich schnell, und einige Pflanzen erledigen dies sogar ganz von alleine. Erdbeeren oder Vallisnerien beispielsweise über ihr sogenanntes Rhizom, oder sämtliche Zwiebelgewächse über ihre Brutzwiebeln.

Die Frage ist nur, ob man den Steckling auch im Orbit bzw. im All dazu bringen kann, sich zu einer kompletten Pflanze weiter zu entwickeln. Hierüber macht sich zur Zeit ein Schülerteam aus Ravensburg Gedanken. Ihr Projekt „V3PO“ steht für „Vegetative Vermehrungsfähigkeit Von Pflanzen im Orbit“ und wird – falls die Finanzierung klappt – demnächst Teil des NASA Education Programms auf der ISS sein.

Ist es möglich, auf einer Raumstation pflanzliche Nahrungsmittel in einer größeren Menge mit gleicher Qualität zu produzieren und damit die Versorgung der Astronauten mit frischem Gemüse auf langen Missionen gewährleisten zu können? (…) Im Gegensatz [zur generativen Vermehrung] kann durch die vegetative Vermehrung (z.B. Stecklinge) ein einheitlicher Bestand erreicht werden. Zudem gewährleistet die vegetative Vermehrung den Bestand auch dann, wenn Pflanzen nur wenig, schlecht keimfähige oder gar keine Samen hervorbringen. (Quelle: https://www.sciencestarter.de/v3po)

Die Schüler beschäftigen sich hauptsächlich mit der Frage, ob Stecklinge unter Schwerelosigkeit ausreichend Wurzeln und Knospen ausbilden und ob diese sich korrekt im Raum orientieren werden. Bisherige Versuche weisen darauf hin, dass ihr Experiment gute Chancen auf Erfolg hat. Süßkartoffel-Stecklinge zum Beispiel bildeten in einem ähnlichen Experiment sogar mehr und längere Wurzeln aus als die Kontrollgruppe auf der Erde:

Bisherige Erkenntnisse

All stem cuttings produced adventitious roots and growth was quite vigorous in both ground-based and flight samples and, except for a slight browning of some root tips in the flight samples, all stem cuttings appeared normal. The roots on the flight cuttings tended to grow in random directions. Also, stem cuttings grown in microgravity had more roots and greater total root length than ground-based controls. (…) Despite the greater accumulation of carbohydrates in the stems, and greater root growth in the flight cuttings, overall results showed minimal differences in cell development between space flight and ground-based tissues. This suggests that the space flight environment did not adversely impact sweetpotato metabolism and that vegetative cuttings should be an acceptable approach for propagating sweetpotato plants for space applications. [3]

Zwar waren die Wurzeln nicht normal ausgerichtet, aber Versuche mit anderen Pflanzen wie Schaumkresse (Arabidopsis) haben ergeben, dass sich die Wachstumsrichtung unter Umständen durch passende Beleuchtung korrigieren lässt:

Skewing and waving, thought to be gravity dependent phenomena, occur in spaceflight plants. In the presence of an orienting light source, phenotypic trends in skewing are gravity independent (…) [4]

Das V3PO-Team hat sich für Ficus Pumila, eine Feigenart, als Versuchsobjekt entschieden. Auch hier sind sicherlich interessante Erkenntnisse zu erwarten, denn es bilden nicht alle Stecklinge aller Pflanzenarten gleichermaßen bereitwillig Wurzeln aus. Bei manchen geht es sehr schnell, bei anderen dauert der Prozess sehr lange. Dies lässt sich notfalls allerdings chemisch beschleunigen, wie man schon seit 1957 weiß [5]. Es ist dazu nicht einmal notwendig, Stecklinge im ursprünglichen Sinn, also ganze Blätter, Sprosse etc., zu verwenden. Schon ein relativ kleines, aus einem Blatt ausgestanztes Teil kann durchaus wieder zu einer ganzen Pflanze heranwachsen. Im Extremfall reichen einzelne Zellen. Auf diese Weise wäre es im Prinzip möglich, aus einer einzigen Mutterpflanze in relativ kurzer Zeit eine ganze Plantage entstehen zu lassen. [6]

Vor- und Nachteile

Bei langsam keimenden Pflanzen oder auch solchen, die gar nur einmal im Leben blühen und Samen bilden, ist die vegetative Vermehrung in der Tat eine gute Option, um die Besatzung eines Raumfahrzeugs schneller mit den gewünschten Pflanzen in gleichbleibender Qualität zu versorgen. Anbau und Ernte werden bzgl. Dauer und Umfang besser planbar und gehen zügiger vonstatten. Zudem hat man es direkt mit vergleichsweise robusten, adulten Pflanzen zu tun, statt mit empfindlichen Keimlingen. Auch die Gefahr, dass Strahlungsschäden eine ganze Generation unbrauchbar machen, ist reduziert. Sie können zwar an einzelnen Teilen einer Pflanze auftreten, aber in den meisten Fällen wird man noch genügend gesunde Teile übrig haben, die man weiterverwenden kann.

Ist vegetative Vermehrung nun also das Nonplusultra des Pflanzenanbaus im All? Ich denke nicht. Bei Pflanzen wie z. B. Getreide oder anderen schnell keimenden Arten (Kresse!) ist es wahrscheinlich ohnehin sinniger, direkt Samen zu verwenden und auf die vegetative Vermehrung nur bei Fehlentwicklungen zurück zu greifen. Auch Neuzüchtungen werden in vielen Fällen die generative Vermehrung erfordern. Hinzu kommt: Genetische Vielfalt durch generative Vermehrung hat einen nicht zu unterschätzenden Wert. Gerade in einem Umfeld wie einem Raumfahrzeug, wo Nachschub schwer zu organisieren ist. Stellen wir uns vor, wir sind unterwegs zum Mars oder noch weiter und es bricht eine Krankheit unter einer Pflanzenart aus. Oder man entdeckt erst mit einiger zeitlicher Verzögerung eine unerwünschte Eigenschaft wie Fäulnisanfälligkeit an der Originalpflanze. Wenn alle Jungpflanzen nun von diesem einen Exemplar geklont wurden, wird man in solchen Fällen Mühe haben, den Bestand zu retten. Hat man aber weitere Exemplare bzw. Samen mit anderem Genom, stehen die Chancen ganz gut, dass sich darunter brauchbarer Ersatz findet. Klonen kann man zur Not immer noch. Es ist aber wie schon angedeutet auch gar keine Frage von entweder – oder, generativ oder vegetativ. Beides kann gleichzeitig oder nacheinander erfolgen; die Methoden ergänzen einander.

Wer das Projekt der Schüler unterstüzten möchte, kann das über ihre Sciencestarter-Seite tun, wer den Fortschritt verfolgen möchte, findet sie auf Twitter unter @JufoV3PO. In jedem Fall wünsche ich dem Team allen erdenklichen Erfolg bei der Finanzierung und Durchführung!

………………….

[1] http://www.livescience.com/27868-plant-sex-zero-gravity.html

[2] http://www.spacesafetymagazine.com/2012/09/04/chinese-space-radiation-mutate-food-crops/

[3] Mortley, Bonsi et al.: „Influence of Microgravity Environment on Root Growth, Soluble Sugars, and Starch Concentration of Sweetpotato Stem Cuttings„, J Am Soc Hortic Sci. 2008 May 1; 133(3): 327–332.

[4] http://www.biomedcentral.com/1471-2229/12/232

[5] Skoog F, Miller CO: „Chemical regulation of growth and organ formation in plant tissue cultured in vitro. Symposia of the Society for Experimental Biology 1957;11:118-131., zitiert in [6]

[6] Ray J. Rose1, Xin-Ding Wang1, Kim E. Nolan1 and Barry G. Rolfe2, „Root meristems in Medicago truncatula tissue culture arise from vascular-derived procambial-like cells in a process regulated by ethylene„, J. Exp. Bot. (2006) 57 (10): 2227-2235. doi: 10.1093/jxb/erj187

Zum Wohl!

Eichenfässer

Eichenfässer, Credit: Gerard Prins, CC BY-SA 3.0

Es klingt wie ein Geschenk an die Besatzung, ist aber ein handfestes wissenschaftliches Experiment, an dem unter anderem auch die Universität von Tokio und die Tohoku-Universität in Sendai beteiligt sind: Die japanische Distillerie Suntory will einige ihrer Produkte zur ISS schicken, um sie in der dortigen Schwerelosigkeit reifen zu lassen:

H-II Transfer Vehicle No. 5, commonly known as “Kounotori5” or HTV5, is scheduled to be launched from JAXA’s Tanegashima Space Center on August 16 (Sunday) carrying alcohol beverages produced by Suntory to the Japanese Experiment Module aboard the International Space Station, where experiments on the “development of mellowness” will be conducted for a period of about one year in Group 1 and for two or more years (undecided) in Group 2.“ (Quelle: http://www.suntory.com/news/2015/12432.html)

Wieso und warum? Nun, offenbar haben die Hersteller festgestellt, dass eine Reihe von alkoholischen Getränken ein milderes Aroma entwickeln, wenn sie dabei möglichst wenig Temperaturschwankungen und Bewegung ausgesetzt sind. Genau das wäre auf der ISS gewährleistet. Obwohl die schottische Distillerie Ardberg von 2011 bis 2014 bereits ein ähnliches Experiment durchführte, sind die Zusammenhänge noch nicht abschließend geklärt. Die Proben der Schotten sind zwar schon wieder auf der Erde, ihre Studie mit den Analyseergebnissen ist allerdings noch nicht veröffentlicht.

Die These der Japaner lautet, dass die Entstehung hochkomplexer Moleküle aus Wasser, Ethanol und anderer für die Getränke typischer Stoffe für die Milde des Aromas von Bedeutung sind. Sie vermuten, dass die Konvektion bzw. deren Abwesenheit dabei eine entscheidende Rolle spielt. Konvektion kann man zum Beispiel gut beobachten, wenn man einen Topf voll Wasser auf einer Herdplatte erhitzt: Die untersten Wasserschichten werden als Erste heiß, verlieren dabei an Dichte und steigen aufgrunddessen nach oben auf. Gleichzeitig wird das noch kühle und dichtere Wasser von oben nach unten gezogen, wo es seinerseits erhitzt wird, aufsteigt, und so weiter. In einer Umgebung ohne Schwerkraft kann ein solcher Austausch jedoch nicht stattfinden, da die Dichte bzw. das Gewicht der einzelnen Flüssigkeitsschichten dort eben unerheblich ist. (Konvektion wäre hier allerdings noch über Änderungen in der Oberflächenspannung zu erreichen.)

Unterdrückt man die thermische Konvektion, kann man z. B. besonders gleichmäßige Kristalle züchten oder auch andere Materialeigenschaften erreichen, die unter normalen irdischen Bedingungen nicht zustande kämen. Es ist also wohl nicht ganz abwegig, diese Erkenntnisse auch auf die erwähnten Wasser-Ethanol-Plus-X-Moleküle zu übertragen.

Nneben dem Institut für Feststoffphysik der Universität Tokio wird auch das japanische Synchrotron-Strahlungsforschungs-Institut JASRI an der Analyse der Molekularstruktur mitwirken.

Der Weltraumwhisky ist im Anschluss an das Experiment nicht für den Verkauf vorgesehen. Sollte die These der Japaner sich als korrekt herausstellen, wäre die Herstellung von Whisky an Bord der ISS allerdings vielleicht eine Möglichkeit, deren Zukunft zu sichern. *hüstel* Im Umkehrschluss könnte man aber auch auf die Idee kommen, den Liebhabern der harten, rauchigen Whiskysorten Produkte anzubieten, die auf Rüttelplatten gereift sind. Die Geschmäcker sind ja bekanntlich verschieden… ^^

Philae ist wieder wach!

Ich hatte es ja kaum noch zu hoffen gewagt, aber Philae, der kleine Lander auf dem Kometen P67, ist gestern abend tatsächlich wieder aufgewacht und funkt wieder an die Erde.

Mitte November 2014 war Philaes Landung auf dem Kometen nicht ganz planmäßig verlaufen. Infolgedessen lag er an unbekannter Stelle, offenbar zwischen Felsen, so dass er nicht optimal mit Sonnenenergie versorgt wurde. Die ESA erklärte damals:

We still hope that at a later stage of the mission, perhaps when we are nearer to the Sun, that we might have enough solar illumination to wake up the lander and re-establish communication, ” added Stephan.

From now on, no contact will be possible unless sufficient sunlight falls on the solar panels to generate enough power to wake it up. The possibility that this may happen later in the mission was boosted when mission controllers sent commands to rotate the lander’s main body with its fixed solar panels. This should have exposed more panel area to sunlight.

(Quelle: ESA Pressemitteilung)

Offensichtlich haben sich die diesbezüglichen Hoffnungen am 13. Juni 2015 erfüllt. Der Lander befindet sich nun in 305 Mio. Kilometer Entfernung von der Erde und hat bereits erste wissenschaftliche Daten nach Hause gefunkt.

„Philae is doing very well: It has an operating temperature of -35ºC and has 24 Watts available,“ explains DLR Philae Project Manager Dr. Stephan Ulamec. „The lander is ready for operations.“
(Quelle: ESA, „Rosetta Blog„)

Falls alles nach Plan verläuft, wird Philae nun seine restlichen gesammelte Daten zur dortigen Auswertung an die Bodenkontrollen funken. Informationen darüber, wie lange der Lander diesmal schätzungsweise aktiv bleiben kann / wird, habe ich leider noch nicht gefunden. Ich werde das ggf. hier ergänzen.

Meinen herzlichsten Glückwunsch an die Teams der ESA! Großartige Leistung, die gesamte Mission!

Was machen Insekten unter Schwerelosigkeit? Ein Blogeintrag für Kinder

Neulich fragte meine zehnjährige Tochter mich: „Was machen eigentlich Insekten in der Schwerelosigkeit?“ Ich hakte nach und fand heraus, dass sie Insekten meinte, die schon von Natur aus fliegen können. Was diese Tierchen ja aber ohne Schwerkraft gar nicht mehr müssten. Auf der ISS zum Beispiel, oder bei einem Parabelflug. Aber merken Insekten das auch? Die Antwort ist ein klares „Ja!“ Sie merken es, und zwar ziemlich schnell, wie man in diesem Video von Stubenfliegen sehen kann:

Auch Schmetterlingen fällt es auf, wenn die Schwerkraft fehlt, und auch dazu gibt es ein Video, das ihre Reaktion zeigt:

Die NASA berichtet von ihren Versuchen mit Insekten Folgendes:

Honigbienen (Apis mellifica) konnten nicht normal fliegen und purzelten in der Schwerelosigkeit herum. Stubenfliegen (Muscus domestica ) liefen hauptsächlich lieber die Wände entlang. Wenn sie jedoch flogen, konnten sie ihre Bewegungen (…) kontrollieren, auch wenn der Flug nur wenige Sekunden dauerte. Motten (Anticarsis gammatalis) die im All aufwuchsen, lernten es, gar nicht zu fliegen, sondern ohne Flügelschlag zu schweben.

Nun könnte man sich darüber wundern. Wenn sie doch sowieso schon fliegen können, warum macht es dann überhaupt noch einen Unterschied für Insekten, wenn die Schwerkraft weg ist? Das hängt mit den Organen zusammen, mit denen Insekten die Lage ihres Körpers beim Flug überprüfen. Bei der Stubenfliege zum Beispiel sind das die Schwingkölbchen neben ihren Flügeln. Auf => diesem Foto <= kann man sie als kleine gelbe Paddel erkennen. So klein und leicht diese Dinger auch sind: Auch sie gehorchen der Schwerkraft, wie jedes noch so winzige Staubkörnchen auf der Erde. Fehlt die Schwerkraft nun aber, bewegen sich auch diese Schwingkölbchen anders als sonst. Sie werden ja nicht mehr nach unten gezogen. Es fehlt der Fliege dann die Information für "unten" und "oben". Das ist ganz ähnlich wie bei unserem eigenen, menschlichen Gleichgewichtsorgan.

Auch andere Tiere, die normalerweise fliegen können, kommen ohne Schwerkraft in Schwierigkeiten. Tauben oder Fledermäuse fliegen dann zum Teil sogar kopfüber und verlieren völlig die Orientierung. [1] Auch sie haben Gleichgewichtsorgane, die dann nicht nehr richtig funktionieren.

Dass manche dieser Tiere trotzdem noch ihren Zielort erreichen, zeigt uns, dass sie – wie auch wir Menschen – auf andere Art an die fehlenden Informationen kommen. Zum Beispiel mit Hilfe der Augen. Sie gewöhnen sich mit der Zeit daran, sich auf diese anderen Informationen zu verlassen. Andere Tiere schaffen das anscheinend nicht ganz so gut. Vielleicht taugen ihre Augen dafür weniger, oder sie können die Ersatz-Informationen in ihren Hirnen nicht so gut verarbeiten.
(Übrigens: Vielen Menschen wird übel, wenn ihre Augen ihnen andere Informationen liefern als ihr Gleichgewichtsorgan. Zum Beispiel auf Reisen in Autos, auf Schiffen oder auch auf der ISS. Ob das bei Insekten oder Tauben wohl auch so ist?)

Ameisen können zwar nicht fliegen, sind aber auch Insekten und passen sich an Schwerelosigkeit meistens ganz gut an. Ihr Problem ist, dass sie den Kontakt zum Boden oder zu der Wand verlieren, auf der sie gerade herum krabbeln. Sie lernen aber sehr schnell, sich zum Beispiel an anderen Ameisen fest zu halten, um wieder auf die Beine zu kommen. Ameisen krabbeln ohne Schwerkraft langsamer, vermeiden die glatteren Oberflächen ihrer Umgebung und halten sich lieber an die rauheren. Sie werden also insgesamt vorsichtiger und arbeiten auch nicht mehr so gut wie sonst. Sie haben in Experimenten auf der ISS zum Beispiel ihre Umgebung nicht mehr so gründlich nach Baumaterial und Nahrung abgesucht wie auf der Erde. Aber sie beherrschen ihre Körper in der Schwerelosigkeit gut. [2]

Warum wollen wir Menschen solche Sachen eigentlich wissen? Zuallererst natürlich, weil sie einfach spannend sind. Wir Menschen (und auch viele Tiere) sind neugierig. Wir beobachten und lernen gerne. Und das ist auch gut so, denn sonst hätten wir viele schöne und nützliche Dinge nie er- oder herausgefunden. Außerdem: Wenn wir tatsächlich irgendwann mal andere Planeten oder Monde bewohnen möchten, werden wir auch Tiere dort brauchen. (Ja, auch Insekten. Zum Beispiel, um Pflanzen zu bestäuben.) Da ist es gut, wenn wir wissen, ob und wie wir ihnen bei der Anpassung helfen können. Bei den Ameisen gab es aber auch noch einen weiteren Grund für das Experiment. Die Forscher hoffen nämlich, dass sie aus dem Verhalten der Ameisen lernen können, wie man Such-Roboter am besten baut und programmiert. Diese könnte man dann einsetzen, um in unübersichtlichen Gegenden Verletzte zu suchen oder das Gelände zu erkunden. Aber insgesamt gilt wie immer, wenn es was zu lernen gibt: Man weiß nie, wann man es vielleicht mal brauchen kann.

——————
[1] Hier ist ein englischer Text von den Wissenschaftlern M. Fejtek, M. Delorme und R. Wassersug zu den Fledermäusen. Der Titel lautet: „Behavioral Reactions of the Bat Carollia perspicillata to Abrupt Changes in Gravity“. Der Text erschien 1995 im Magazin namens „Biological Sciences in Space“, Ausgabe 9 Nr. 2, auf den Seiten 77 bis 81: https://www.jstage.jst.go.jp/article/bss/9/2/9_2_77/_pdf

[2] Auch hierzu haben ein paar Wissenschaftler geforscht: Stefanie M. Countryman1, Martin C. Stumpe2, Sam P. Crow3, Frederick R. Adler4, Michael J. Greene5, Merav Vonshak6 und Deborah M. Gordon6 schrieben eine Studie mit dem Titel „Collective search by ants in microgravity“. Er erschien am 30. März 2015 im Magazin „Frontiers in Ecology and Evolution“. http://dx.doi.org/10.3389/fevo.2015.00025