(Editiert 27.10.) ExoMars-Lander, Ursache für Absturz wahrscheinlich gefunden

Fünf Tage nach dem Absturz des ExoMars-Landers „Schiaparelli“ scheint die Ursache dafür nun bekannt zu sein. Über den Verlauf des Absturzes waren seit Mittwoch einige Details bekannt geworden, nicht aber der eigentliche Auslöser. Zwar hatte sich der Fallschirm des Landers wie geplant geöffnet, war aber dann samt dem zweiten Teil des Hitzeschildes aus unbekanntem Grund zu früh abgeworfen worden. Gleichzeitig hatten auch die Schubdüsen nur 3 bis 4 statt der geplanten ca. 40 – 60 Sekunden gezündet. Infolgedessen stürzte der Lander aus größerer Höhe als geplant und mit hoher Geschwindigkeit ab.

——-
Edit, 27. Oktober 2016:
Das im Folgenden zitierte Interview schien, als ich diesen Beitrag verfasste, offizielle und gesicherte Infos zu enthalten. Inzwischen gibt es in den Medien Widersprüche, mindestens aber Unklarheiten, im Vergleich mit weiteren Interviews. Zum Beispiel hieß es im ZDF Heute-Journal vom 27. Oktober nun auch, das Verhalten des Fallschirms an sich habe die Fehlfunktion mit verursacht. Ich halte es daher für angezeigt darauf hinzuweisen, dass Dr. Densings Interview mit dem Deutschlandfunk bestenfalls erste Hinweise auf die Absturzursache enthält. Gesicherte, endgültige Erkenntnisse liegen meines Wissens offiziell noch nicht vor.

——–

In einem Interview mit dem Deutschlandfunk erklärte Dr. Rolf Densing, Leiter des ESOC in Darmstadt, dass aller Wahrscheinlichkeit nach die Software des Radars dafür verantwortlich war:

„Soweit wir das bisher rekonstruieren können, hat die Software aus einem Radar-Höhenmessgerät mit der allgemeinen Navigationssoftware nicht richtig gesprochen. Es hat einen Time-Out gegeben, der dazu geführt hat, dass der Fallschirm etwas zur früh abgesprengt wurde, und der dazu geführt hat, dass das Gerät in dem Glauben war, es wäre bereits auf der Oberfläche. So dass es die Bremsraketen abgeschaltet hat. Und jetzt gehen wir davon aus, dass die Sonde aus ca. zwei bis vier Kilometern im freien Fall abgestürzt ist.“
(Quelle: Interview Deutschlandfunk mit Dr. Rolf Densing, 24. Oktober 2016, Dank an Susanne Auer für den Hinweis.)

Ein solcher Glitch ist natürlich unglaublich ärgerlich. Sollte er sich aber als Ursache zu 100% bestätigen, ist er wahrscheinlich immerhin leichter zu beseitigen als ein Fehler im Design oder Gesamtkonzept des Landers. Insofern betrachte ich persönlich diese Neuigkeiten fast schon als gute Nachricht, denn sie werden (hoffentlich) dazu beitragen, dass der für 2020 geplante Rover trotz des Missgeschicks mit „Schiaparelli“ nicht in Frage gestellt und nun doch noch vollends finanziert wird.

ExoMars: Schiaparellis Landung steht morgen bevor!

Zur Erinnerung: ExoMars ist eine Mission von ESA und Roscosmos, deren Zweck die Suche nach Anzeichen von vergangenem Leben auf dem Mars ist. Die Mission ist zweigeteilt. Der erste Teil, am 14. März 2016 gestartet, umfasst den Satelliten „Trace Gas Orbiter“ (TGO) sowie ein Landemodul (EDM) namens „Schiaparelli“. Diese beiden haben den Mars vor wenigen Tagen erreicht. Der TGO wird den Planeten von nun an für einige Jahre umkreisen und analysieren. Schiaparelli soll morgen Nachmittag, am 19. Oktober, auf dem Mars landen.

ExoMars: Trace Gas Orbiter (TGO) Modell

ExoMars: Trace Gas Orbiter (TGO) Modell.
Foto: Ute Gerhardt

Der TGO hat vier Instrumente an Bord. Er wird, wie der Name schon verrät, nach Spurengasen wie Methan in der Atmosphäre des Mars suchen und analysieren, wie sie über den Planeten bzw. über dessen Jahreszeiten verteilt sind. Bedingt durch die starke UV-Strahlung hält sich Methan auf dem Mars nur ca. 400 Jahre lang. Fest steht allerdings bereits, dass sein Vorkommen in der Atmosphäre immer wieder erneuert wird. Über den TGO erhoffen die Wissenschaftler sich nun genauere Erkenntnisse, wo, wann und wie dies geschieht. Das Methan ist hierbei deshalb von besonderem Interesse, weil es oft als Nebenprodukt biologischer Prozesse entsteht. Es kann allerdings auch auf geologische Prozesse zurückzuführen sein. Die beiden Prozesse bringen aber jeweils unterschiedliche Isotope dieses Gases hervor. Der TGO ist in der Lage, diese zu bestimmen. Dies und seine größere Messgenauigkeit unterscheidet ihn maßgeblich von früheren, ähnlichen Missionen wie z. B. „Mars Express“. Er dient ab 2020 außerdem als Daten-Relais für den ExoMars-Rover, der im zweiten Teil der Mission zum Mars starten soll.

ExoMars: Trace Gas Orbiter (TGO) Modell

ExoMars: Trace Gas Orbiter (TGO) Modell.
Foto: Ute Gerhardt

Schiaparelli, der Lander, ist im Vergleich weniger von wissenschaftlichem als vielmehr von technischem Interesse. Er dient hauptsächlich Testzwecken für neue Landetechniken und hat eine voraussichtliche Lebensdauer von lediglich ca. einer Woche. Nichtsdestotrotz besitzt auch er einige Instrumente und Sensoren. Sie sollen während und kurz nach der Landung die Umgebungstemperatur, Feuchtigkeit, Atmosphärendruck, Windrichtung und Windgeschwindigkeit messen. Da Schiaparelli während der Sandsturmsaison landen wird, erhoffen die Wissenschaftler sich von seinen Messungen Auskunft über Entstehung und Ausmaß dieser Stürme. Warum und wie der Lander nun gerade da landen soll, wo er landen wird, und warum er schon drei Tage vor der Landung vom Orbiter getrennt wurde, hat wieder einmal Michael Khan sehr anschaulich erklärt. Es gibt im Web zudem auch noch eine interaktive Mars-Karte, auf der man sich das Terrain und die Erläuterungen dazu anschauen kann.

Zweieinhalb Zitterpartien hat die Mission ExoMars bereits hinter sich: Den Start, der im Herbst 2015 wegen einiger Probleme mit zwei Sensoren des Landers von Januar auf März 2016 verschoben werden musste. Und vergangenen Sonntag die planmäßige Trennung des Orbiters und des Landers, welche zuvor fast 500 Millionen Kilometer Wegstrecke als Einheit zurück gelegt hatten. Als sei es nicht schon spannend genug gewesen, ob nach dieser Reise überhaupt noch die Trennung gelingt, kam es im Anschluss für eine gute Stunde zur Unterbrechung der Datenübertragung zwischen dem Orbiter und dem Kontrollzentrum. Ein Adrenalinschub vom Feinsten, denn hätte man dies nicht in den Griff bekommen, wäre es wahrscheinlich das Aus für die Mission gewesen.

Die dritte Zitterpartie steht ExoMars nun also morgen bevor: Der Eintritt der Landeeinheit „Schiaparelli“ in die Marsatmosphäre und ihre Landung auf der Oberfläche des Planeten nämlich. Wie das vonstatten gehen soll, zeigt das folgende Video der ESA ab Minute 0:56:

  • Laut Zeitplan soll Schiaparelli um 16:52 Uhr Mitteleuropäischer Sommerzeit auf einer Höhe von ca. 100 km in die Marsatmosphäre eintreten.
  • Um 16:55 Uhr öffnet sich in 11 Kilometer Höhe der Fallschirm, der Schiaparellis Sturz abbremsen wird. Der Lander wird zu diesem Zeitpunkt eine Geschwindigkeit von über 1100 km/h haben.
  • Um 16:56 Uhr ist die Geschwindigkeit bereits auf etwas über 300 km/h gebremst und Schiaparellis Hitzeschild trennt sich vom Lander. Die Höhe beträgt ca. 7 Kilometer.
  • Eine Minute später, um 16:57 Uhr, trennt sich auch der zweite Teil der Verkleidung mit dem Fallschirm ab. Der Lander hat zu diesem Zeitpunkt eine Geschwindigkeit von ca. 240 km/h und befindet sich in 1,3 Kilometer Höhe.
  • Um 16:57 Uhr, auf einer Höhe von gut einem Kilometer, werden die Schubdüsen in Betrieb genommen. Der Lander bremst nun aus freiem Fall bis zur Landung auf dem Mars in derselben Minute ab.

(Quelle: ESA: Schiaparelli Descent Sequence)

Sobald der Befehl zur Landung gegeben ist, kann die ESA nicht mehr ins Geschehen eingreifen. Die Signallaufzeit ist mit knapp 10 Minuten für eine Wegstrecke zu lang, als dass man danach noch zeitnah auf Fehlfunktionen reagieren bzw. Korrekturen an der Befehlssequenz vornehmen könnte. Verfolgen kann man die Landung im Livestream aus dem Kontrollzentrum der ESA in Darmstadt. Mit Bildern direkt vom Mars ist eher nicht zu rechnen, aber immerhin mit Updates und Kommentaren rund um das Geschehen im Hauptkontrollraum. Ich selbst werde ab ca. 14:00 Uhr unter meinem Usernamen @Leaving_Orbit von der Presseveranstaltung der ESA in Darmstadt über die dortigen Vorträge und Diskussionen twittern und ggf. später noch diesen Eintrag hier um weitere Informationen ergänzen.

Es gibt bei dieser Mission noch immer viele Risiken und potenzielle Stolpersteine. Sollte all das morgen aber klappen, folgt – wie oben schon erwähnt – aller Voraussicht nach im Jahr 2020 der zweite Teil der Mission, der ExoMars Rover. Mit ihm beginnt dann die „handfeste“ Analyse auf der Marsoberfläche.

In der Zwischenzeit wird der TGO seinen Mars-Orbit auf ca. 400 km Höhe verringern und im Frühjahr 2018 (sic!) mit seinen wissenschaftlichen Analysen beginnen. Die große zeitliche Lücke erklärt sich dadurch, dass zunächst der Orbit langsam auf die korrekte Höhe und Bahn korrigiert werden muss und obendrein der Mars auch von der Erde aus gesehen für einige Zeit hinter die Sonne wandert. Aus dieser Position ist keine Kommunikation mit der Erde möglich. Der TGO legt daher zunächst eine Betriebspause ein.

Das Ende der ExoMars-Mission wird für 2022 erwartet.


——
Update, 19. Oktober 2016, 21:46 Uhr:
Kurz vor dem Touchdown auf dem Mars brach das Signal des Landers Schiaparelli ab. Sowohl die zu dem Zeitpunkt lauschende Bodenstation in Indien als auch der NASA-Orbiter „Mars Express“, der von der ESA als Relais eingesetzt war, verloren das Signal zur selben Zeit. Die Ursache dafür ist bisher noch nicht geklärt. Das Kontrollzentrum will in der kommenden Nacht die Telemetrie-Daten analysieren, die bisher vorhanden sind, und eventuelle Ergebnisse morgen früh auf der Pressekonferenz vorstellen.

Der Trace Gas Orbiter jedoch befindet sich im vorgesehenen Orbit und funktioniert einwandfrei. Somit ist zumindest dieser wichtigere Teil der Mission bisher erfolgreich.

Update, 20. Oktober 2016, 23:55 Uhr:
Es sieht bisher so aus, als hätte der Lander seinen Fallschirm zu früh abgeworfen. Obendrein wurden die Schubdüsen nur für drei bis vier Sekunden gezündet, also viel kürzer als geplant. Die Daten werden allerdings derzeit noch genauer analysiert.

Trotz Fehlfunktion ist die Mission von Schiaparelli nicht komplett gescheitert. Wir erinnern uns, dass er in der Tat genau den Zweck erfüllen sollte, neue Techniken zu testen. Aus dem, was schief gelaufen ist, lässt sich ebenfalls viel für zukünftige Missionen lernen. Obendrein hat Schiaparelli vor Erreichen der Marsoberfläche noch ca. 600 MB an Daten an den TGO gesendet, die sehr viele wertvolle Informationen aus Schiaparellis Geräten bzw. Sensoren enthalten.

Update, 24. Oktober 2016, 23:27 Uhr:
Die Ursache für den Absturz ist höchstwahrscheinlich gefunden.

Die Sonde ist tot! Es lebe die Sonde!

Rosetta, die Kometensonde, ist vor einigen Tagen tatsächlich wie vorgesehen deaktiviert worden und auf dem Kometen 67P/Churyumov-Gerasimenko aufgeschlagen. Das Medienecho war wie zu erwarten beträchtlich, und auch in den sozialen Medien war die Anteilnahme groß. Ich muss gestehen, auch ich war fasziniert und ein wenig wehmütig. Als mir aber auf Twitter und Facebook mehrfach die Behauptung unterkam, Rosetta samt Philae sei – sinngemäß – der Welt liebste Kometensonde gewesen, wanderten meine Augenbrauen in die Höhe. Wie bitte?!

Ohne die großartigen Errungenschaften dieser Mission klein reden zu wollen, wurde mir klar, wie sehr doch das Bild, das die hiesige Öffentlichkeit von Raumfahrt hat, auf Europa, USA und maximal noch Russland beschränkt ist. In gewissem Ausmaß verständlich. Aber ich würde im Folgenden trotzdem gerne dazu beitragen, dies zu ändern:

Darf ich bekannt machen? => Hayabusa.

Hayabusa war eine ca. 500 Kilo schwere japanische Sonde, die im Mai 2003 zum Asteroiden Itokawa startete von dort sogar zurückkehrte. Und zwar mit Material des Asteroiden im Gepäck, trotz widrigster Umstände bzw. zahlreicher Fehlfunktionen. Klicken Sie ruhig auf den Link – dahinter steckt ein veritabler Raumfahrt-Thriller! Eine Sample-Return-Mission! Das hat seinerzeit durchaus ebenso Aufsehen erregt, mit vielen Fans, die die ganzen Jahre über mitgefiebert haben. *) Nur leider eher weniger außerhalb Asiens.

Hayabusa, deren Name zu Deutsch übrigens „Wanderfalke“ bedeutet, kam zu einem Zeitpunkt wieder zur Erde zurück, als Rosetta noch gar nicht ihr Ziel erreicht hatte. Nämlich im Juni 2010. Doch damit nicht genug: Schon im Dezember 2014, also kurz nach Rosettas Ankunft bei 67P, startete vom Tanegashima Space Center die Nachfolgemission, „Hayabusa 2“:

Hayabusa 2. Bild: JAXA
Hayabusa 2. Bild: JAXA

Ihr Ziel ist der Asteroid 162173 Ryugu („Drachenpalast“).
Ryugu – mit einem Durchmesser von fast einem Kilometer bald doppelt so groß wie seinerzeit Itokawa – ist unter anderem deshalb interessant für eine derartige Mission, weil er nach bisherigem Informationsstand stark kohlehaltig ist, gleichzeitig aber auch UV-Strahlung in Wellenlängenbereichen absorbiert, die bei derartigen Asteroiden normalerweise nicht bzw. weniger stark absorbiert werden. Das lässt auf Glimmer- und Ton-Anteile im Gestein schließen. Diese Mineralien wiederum enthalten stets Wasserstoff- und Sauerstoffanteile oder gar tatsächlich Wasser. Man erhofft sich also auch von dieser Mission Rückschlüsse auf den Ursprung des Universums und des Lebens darin.

Die Instrumente

Anders als ihre Vorgängerin wird sich Hayabusa 2 allerdings ab Juli 2018 nicht nur eine halbe Stunde, sondern anderthalb Jahre lang am bzw. auf dem Asteroiden aufhalten. Geplant ist, ihm Proben zu entnehmen und ihn mit Hilfe des „Near Infrared Spectrometer“ (NIRS3) und des „Thermal Infrared Imager“ (TIR) zu kartographieren. Der batteriegetriebene Haupt-Lander dieser zweiten Mission, MASCOT (Mobile Asteroid Surface Scout), ist so konzipiert, dass er sich auf dem Kometen fortbewegen kann. Ausgerüstet ist er auch mit Kamera bzw. Mikroskop, Strahlungsmesser und Magnetometer. Drei solargetriebene „MINERVA-II mini-landers“ sollen während des Aufenthalts u. a. Temperaturmessungen vornehmen. Auch sie können ihren Standort aktiv verändern.

minerva2mascot

Hayabusa 2, MASCOT Lander sowie MINERVA-II mini landers. Credit: JAXA

Um auch an Gesteinsproben aus tieferen Schichten zu gelangen, wird Hayabusa einen Sprengsatz (Small Carry-on Impactor (SCI)) mit 4,5 Kilogramm Oktogen auf den Asteroiden fallen lassen. Der SCI wiederum verformt eine 2,5 Kilogramm schwere Kupferplatte zu einem Projektil, welches in die Oberfläche von Ryugu einschlägt und so frische, noch nicht durch Umwelteinflüsse manipulierte Gesteinsschichten in Zugriff bringt.

Obwohl man den Asteroiden schon relativ gut zu kennen glaubt, bin ich gespannt, ob auch diesmal Überraschungen auf die Forscher warten. Hayabusa 1 beispielsweise kam seinerzeit mitnichten an dem soliden Objekt an, das die Wissenschaftler erwartet hatten. Stattdessen stellte sich damals heraus, dass Itokawa im Grunde ein Haufen Geröll ist, dessen Einzelteile einander durch ihre Anziehungskraft zusammen halten. Rosetta ihrerseits lieferte die ebenfalls überraschende Erkenntnis, dass auch 67P/Churyumov-Gerasimenko überhaupt erst durch den Zusammenstoß zweier Gesteinsbrocken zu seiner bekannten Form gekommen war.

Interessanterweise ist auch Hayabusa 2 wieder mit einem Ionenantrieb ausgestattet. Bei Hayabusa 1 wurde dieser auf der Rückreise sehr in seiner Funktion eingeschränkt, nachdem eine Sonneneruption die Energieversorgung beeinträchtigt hatte und die Mission daraufhin (wieder einmal) fast scheiterte. Die JAXA hat ihre Antriebe diesmal allerdings verbessert bzw. besser geschützt.

Die Rückkehr der Sonde mit den Proben des Asteroiden ist für 2020 geplant. Eine detailliertere, grafische Darstellung des zeitlichen Ablaufs findet sich => hier oder im folgenden Video:

Sicher, beide Missionen, Hayabusa und Rosetta, sind bzw. waren in Technik und Zielen denkbar unterschiedlich. Sie hatten aber auch viele Gemeinsamkeiten. Und spätestens wenn man sich anschaut, dass zum Beispiel Hayabusas Lander MASCOT vom Deutschen Zentrum für Luft- und Raumfahrt in Kooperation mit dem französischen Centre national d’études spatiales gebaut wurde, wird doch klar, dass Raumfahrt im Grunde nicht Länder- sondern schlicht Menschenangelegenheit ist. Über alle Grenzen hinweg. Was für mich einschließt, dass ich auch als technisch Unbeteiligter mit „fremden“ Missionen mitbangen und mich freuen kann. Jede Mission, egal wer sie durchführt, geht uns alle an.

Ich hoffe sehr, dass auch Hayabusa in Zukunft bekannter wird, vielleicht auch in Europa so viel Begeisterung hervor ruft wie Rosetta. Oder wenigstens annäherungweise. Verdient hat sie es allemal.

*) Rund um die Geschichte von Hayabusa 1 wurden sogar mehrere Spielfilme gedreht:
http://asianwiki.com/Hayabusa_%28Japanese_Movie%29
http://asianwiki.com/Okaeri_Hayabusa
http://asianwiki.com/Hayabusa:_Harukanaru_Kikan
http://asianwiki.com/Hayabusa:_Back_to_the_Earth

————-
PS: Ein niedliches Comic-Alter-Ego wie Rosetta hat Hayabusa auch schon längst. Wie übrigens eine ganze Reihe von JAXA-Missionen. Auch da sind sie „uns“ voraus. Wenn man denn Comics mag. ;-)

Hayabusa 2, Cartoon. Credit: JAXA

Hayabusa 2, Cartoon. Credit: JAXA

Rosetta wird gecrasht. Aber warum?

Raumfahrtmissionen sind nicht nur relativ kostspielig. Sie müssen auch von langer Hand geplant werden. Nicht selten vergehen Jahrzehnte von der neuen Idee bis zum Missionserfolg. Es ist also nicht verwunderlich, wenn man aus allen Missionen das maximal Mögliche herausholen möchte, was die Lebensdauer der Instrumente, aber natürlich auch, was Umfang und Qualität der Ergebnisse angeht. Deshalb mutet es auf den ersten Blick etwas seltsam an, dass die Kometensonde „Rosetta“, der rein technisch betrachtet eigentlich noch eine gewisse Lebenszeit beschieden wäre, am Freitag dieser Woche auf ihrem Zielkometen 67P/Tschurjumow-Gerassimenko abstürzen soll – und zwar gewollt und geplant, obwohl ihre Instrumente noch funktionieren.

In den sogenannten Sozialen Medien hat dies zu einigen Fragen geführt. Insbesondere danach, warum man Rosetta nicht eine andere, neue Mission gibt, wenn sie doch noch funktionstüchtig ist? Diese Frage hat Michael Khan in seinem Blog bereits ausführlich und anschaulich beantwortet.

Eine weitere Frage drehte sich darum, aus welchem Grund man Rosetta nicht einfach weiter um den Kometen kreisen und Daten liefern lässt, bis sie nicht mehr funktioniert. Die Antwort darauf ergibt sich aus der aktuellen Lage der Sonde bzw. des Kometen: Tschurjumow-Gerassimenko und Rosetta entfernen sich zunehmend von der Sonne. Daher wird Rosetta bald nicht mehr genug Energie erhalten, um irgendwelche Daten an uns zurück zu funken. Je mehr die Sonde dabei auch noch auskühlt, desto wahrscheinlicher ist es außerdem, dass ihre Elektronik daran unwiderruflich Schaden nimmt. Einen erneuten „Winterschlaf“, wie während des zehnjährigen Anfluges an den Kometen, geben die aktuellen Energiereserven leider auch nicht mehr her. Darüber hinaus verschwindet Rosetta derzeit samt dem Kometen auch noch hinter der Sonne. Damit würde der Funkkontakt ohnehin abbrechen, selbst wenn Rosetta warm und funktionstüchtig bliebe. Die Mission hat also in jedem Fall sehr bald ihr Ende erreicht.

Leitet man Rosetta jedoch noch rechtzeitig in einen Orbit, der am Ende zum Absturz*) auf des Kometen Oberfläche führt, kann man aber immerhin bis kurz vor ihrem Verschwinden auf noch detailliertere Bilder hoffen als man bisher schon erhalten hat. Mit etwas Glück führen diese dann zu noch mehr Erkenntnissen über Ursprung und Beschaffenheit des Kometen. Quasi ein letztes Geschenk der Sonde an die Wissenschaftler, bevor sie unbrauchbar wird.
Genau dieser Prozess wurde in den letzten Monaten und Wochen auch vorbereitet und in die Wege geleitet.

Schön und gut, aber warum versucht man dann nicht, Rosetta am Ende vorsichtig zu landen und wirklich noch den allerletzten Rest ihrer Lebensdauer auszunutzen? Statt sie abstürzen zu lassen und damit sicher zu zerstören? Hierfür gibt es mehrere Gründe:

Erstens ist Rosetta darauf technisch nicht ausgelegt. Sie war von vornherein nur als Transportmittel und Relais für den Lander Philae gedacht. Sie für eine halbwegs sanfte Landung auszulegen, hätte einiges mehr an Aufwand und auch Gewicht nach sich gezogen. Gerade in der Raumfahrt gilt aber: „So komplex wie nötig, aber so einfach wie möglich.“ Damit minimiert man a) Kosten und b) das Risiko für Fehlfunktionen.
Dass Rosetta gegen Ende ihrer Mission nun noch derart nah an den Kometen heran geführt werden kann, ist im Grunde ohnehin schon als Bonus zu betrachten.

Zweitens müsste man damit rechnen, dass die Sonde auch bei einem Landeversuch schwer beschädigt wird und dann ohnehin nicht mehr funktioniert. Zumindest die Solarpanele sowie zahlreiche auf der Unterseite angebrachte Instrumente würden mit an Sicherheit grenzender Wahrscheinlichkeit großen Schaden nehmen.

Drittens würde Rosetta bei einem derartigen Versuch ziemlich sicher nicht auf einem bestimmten gewünschten Punkt zu stehen kommen, sondern umher rutschen oder sich gar überschlagen. Selbst wenn dabei das gesamte Instrumentarium inklusive der Solarpanele unbeschädigt bliebe – was extrem unwahrscheinlich ist -, wäre es schon ein großes Glück, wenn sie obendrein noch an einem sonnenbeschienenen Ort zu liegen käme. (Wir erinnern uns: Philae, der sogar explizit für eine Landung ausgelegt war, prallte eben dabei mehrfach von der Kometenoberfläche ab und kam in einer Felsspalte zu liegen, in die viel weniger Sonnenlicht drang, als der Lander benötigt hätte, um seine Mission voll zu erfüllen.) Doch selbst in diesem Fall wäre das Glück nicht von Dauer, denn der Komet rotiert mit einer Periode von nur ca. 12 Stunden um seine eigene Achse und würde so die Energiezufuhr durch die Sonne immer wieder unterbrechen. Das reicht nicht aus, um Rosettas Funktionen aufrecht zu erhalten. Aber auch wenn all das kein Problem darstellen sollte, wäre es sehr unwahrscheinlich, dass Rosettas Antenne noch präzise genug augerichtet wäre, um Daten an die Erde zurück zu funken. Schon bei einer Abweichung um ein halbes Grad würden ihre Daten die Erde nicht mehr erreichen.

Viertens kann man ein Raumfahrzeug auf diese Entfernung ohnehin nicht mal eben spontan einparken wie ein Auto in eine unverhofft gefundene Parklücke. Das ging auch schon bei Philae nicht. Die Befehlssequenz für seine Landung war schon beim Start der Mission vorprogrammiert und wurde vor Ort automatisch ausgeführt. Für alles andere sind die Reaktionszeiten auf diese Distanz schlicht zu lang. Bis der Lagebericht der Sonde hier einträfe, hätte sich deren Situation vor Ort längst schon wieder weiter verändert. Eine auf ihrem Bericht basierende Kurskorrektur durch das Kontrollzentrum bräuchte noch einmal so lange und käme erst recht zu spät an.

Auf jedes „Aber wenn X nun doch nicht passiert …?“ folgt also unweigerlich ein „… dann passiert aber höchstwahrscheinlich immer noch Y und Z.“ Vergleicht man die Möglichkeiten mit den Chancen auf Erfolg, ist ein Crash auf dem Kometen das Szenario mit dem besten Verhältnis zwischen Aufwand und Ergebnis. Ein Landungsversuch hat in diesem Fall schlicht keinen Sinn.

Hals- und Beinbruch, Rosetta! Und ein dickes, herzliches Dankeschön an alle, die an dieser Mission beteiligt waren. Sie war einfach großartig!

—–
*) Ein Absturz auf den Kometen ist natürlich aufgrund der viel geringeren Schwerkraft nicht vergleichbar mit einem Crash auf die Erdoberfläche. Dennoch ist zu erwarten, dass Rosetta dabei erheblich beschädigt wird.

Planetenforschung im Vulkan

„Was bringt uns das alles hier unten eigentlich?“ Diese Frage ist die häufigste, die man mir stellt, wenn ich erzähle, dass ich mich für Raumfahrt interessiere. Ich kann mir dann meist ein Grinsen nicht verkneifen. Denn wider Erwarten bringt uns die Raumfahrt sehr konkret eine ganze Menge, und meist sind die Fragesteller ziemlich überrascht, wenn man sie damit konfrontiert.

Da hätten wir zum Beispiel die ganzen technischen Spin-Offs der Raumfahrttechnologie. Sie werden an vielen und oft völlig unerwarteten Orten und Gelegenheiten im irdischen Alltag angewendet, obwohl sie ursprünglich rein für die Raumfahrt entwickelt wurden.

VolcanoBot 1, Bild: NASA/JPL-Caltech

VolcanoBot 1, Bild: NASA/JPL-Caltech

Manchmal läuft es allerdings auch genau anders herum und Raumfahrtagenturen entwickeln gezielt Technologien und Geräte für irdische Anwendungen. Nicht ganz uneigennützig, zugegeben. Sie hoffen, diese Geräte später eventuell auch auf anderen Himmelskörpern einzusetzen oder wenigstens Rückschlüsse auf die dortigen Vorgänge ziehen zu können. Das jüngste Beispiel für solche Projekte ist 30 bzw. 25 Zentimeter breit, knapp 20 Zentimeter hoch und streift auf zwei Rädern in 25 Metern Tiefe durch vulkanische Eruptivspalten: Der VolcanoBot.

Vulkane zu erforschen ist ziemlich trickreich und gefährlich. Heiße und giftige Gase aus Eruptivspalten setzen nicht nur Lebewesen, sondern wegen der Korrosion auch herkömmlichen Erkundungsrobotern schnell Grenzen bei der Erforschung. Oft reicht es schon aus, nur in die Nähe der Spalten zu kommen. [1] Menschen haben also kaum eine Chance, die Vorgänge im Inneren direkt zu beobachten. Es sei denn, sie legen keinen gesteigerten Wert darauf, anschließend noch davon berichten zu können.

Die Wissenschaftler wissen daher auch längst nicht so viel über Vulkane, wie ihnen lieb wäre. Wie genau sind Vulkane entstanden und aufgebaut? Warum brechen die einen häufig aus und andere nicht? Was passiert in und unter ihnen, bevor sie ausbrechen? Wo kommen die Schadstoffe her, die sie ausstoßen? [2]
Es gibt natürlich Erklärungsmodelle. Diese sind allerdings sehr vereinfacht. Warnungen vor Vulkanausbrüchen und die Vorhersage von Zeitpunkt, Intensität und Dauer fallen für die Bevölkerung daher oft unbefriedigend vage aus.

Wichtig wären detailliertere Antworten auf die obigen Fragen allerdings nicht nur im Hinblick auf die Erde und die Sicherheit der Anwohner. Denn Vulkane, erloschen und aktiv, gab und gibt es auch auf anderen Himmelskörpern wie dem Mond, Mars, Merkur, dem Jupitermond Europa usw. Vom Mars weiß man mittlerweile sicher, dass auch seine Vulkane Eruptivspalten aufweisen; beim Mond vermutet man es. Wüsste man mehr über die irdischen Vulkane, könnte man nicht nur die Vorhersagen verbessern, sondern Planetenforscher könnten auch die Modelle für die anderen Himmelskörper anpassen und mehr über deren Entstehung und Eigenschaften ableiten. Es wäre also in der Tat allen Beteiligten gedient, um auf die eingangs gestelle Frage nach dem Nutzen zurück zu kommen. Inklusive DemSteuerzahler™.

VolcanoBots 1 und 2, NASA/JPL-Caltech

VolcanoBots 1 und 2, NASA/JPL-Caltech

Carolyn Parcheta und ihr Team aus Geologen und Ingenieuren entwickelten daher am Jet Propulsion Laboratory den VolcanoBot 1, der mit 30 cm etwas größer war als sein aktuelles Nachfolgemodell VolcanoBot 2. Sie stützten sich dabei auf das Konzept der etwas älteren „Durable Reconnaissance and Observation Platform“ (DROP) ihres Teamkollegen und Robotik-Experten Aaron Parness. Modifiziert und optimiert für den Einsatz in Vulkanen kam der Bot in den Spalten des Maunt Kilauea auf Hawaii im Mai 2014 erstmals zum Einsatz. Er lieferte den Forschern Daten, aus denen sie zentimetergenaue 3D-Modelle der Eruptivspalten erstellen können – ein großer Fortschritt gegenüber den bisherigen Schätzungen bzgl. der Ausmaße und Beschaffenheit der Spalten. Der kompaktere und technisch verfeinerte VolcanoBot 2 soll im März 2015 ebenfalls eine inaktive Spalte des Kilauea erforschen und dabei in noch größere Tiefen vordringen. Der neue Bot hat lt. Auskunft der NASA einen stärkeren Motor, kleinere und wendigere Räder und kann seine Kamera auf und ab bewegen. Im Gegensatz zu seinem Vorgänger sendet er seine Daten auch nicht per Funk aus der Vulkanspalte an die Oberfläche, sondern speichert sie an Bord und schickt sie über eine elektrische Verbindung an die Forscher.

Parchetas Team wurde mit diesem Projekt Zweiter in der „National Geographic’s Expedition Granted campaign„.
Ein direkter Einsatz auf einer Raumfahrtmission ist derzeit für den Bot nicht geplant. Ich denke jedoch, dass sein Design für zukünftige entsprechende Projekte zumindest eine gute Grundlage darstellt.

———————-
[1] „Tote Vögel an der Eruptionsspalte, erneute Warnungen“ http://icelandreview.com/de/news/2014/09/22/tote-voegel-der-eruptionsspalte-erneute-warnungen

[2] „Isländischer Vulkan verblüfft Wissenschaftler“ http://www.spektrum.de/news/islaendischer-vulkan-verbluefft-wissenschaftler/1316400

Kurz & Knapp KW 47/2014

Unter der Rubrik „Kurz & Knapp“ finden sich Hinweise und Links auf Meldungen und Webseiten, die mir nebenbei auffallen, aber auf die Schnelle keinen eigenen Blogeintrag hier erhalten. Sei es, weil mir die Zeit fehlt, sei es, weil sie am besten für sich selbst stehen oder das Thema Raumfahrt eher am Rande betreffen: