V3PO – Wie kommt man schneller an mehr Grünzeug?

Pflanzen an Bord eines Raumfahrzeugs sind die ideale Ergänzung zur menschlichen Besatzung. Sie produzieren Sauerstoff, sie bereiten Grauwasser auf, sie wirken ausgleichend auf die Psyche und liefern obendrein noch Nahrung. Allerdings hat die Sache einen kleinen Haken: Das Ansinnen, den gesamten benötigten Grünzeugvorrat für eine längere Mission mal eben von der Erde mit an Bord zu nehmen, ist nicht nur wegen des chronischen Platzmangels ziemlich illusorisch. Jedes Extrakilo kostet obendrein auch extra Treibstoff. Und was Essbares angeht, kann man zig Kisten frische Erdbeeren, Salat und Radieschen auch gar nicht so schnell essen wie der Inhalt verderben würde.

Bleibt also, Samen mitzunehmen und an Bord bei Adam und Eva mit dem Anbau zu beginnen. Das klingt nicht nur mühsam, sondern ist es auch. Es hat aber auch eine Reihe von Vorteilen. Samen nehmen – wenn man es nicht gerade auf Seychellenpalmen abgesehen hat – wenig Platz weg und sind relativ leicht. Sie sind auch nicht sonderlich anfällig für Transportschäden, sie können lange gelagert werden und bei der Auswahl so gemischt, dass beim Anbau möglichst große genetische Vielfalt gewährleistet ist. Allerdings dauert es seine Zeit, bis sie keimen und die Pflanzen voll ausgewachsen sind. Zeit, die man an Bord oft nicht hat. Obendrein können Faktoren wie Strahlung und der Wegfall der Schwerkraft zu Problemen bei der Vermehrung führen. So fielen in bisherigen Versuchen zum Beispiel Pollenschläuche unter Schwerelosigkeit um ca. 8% dünner aus als unter normalen Bedingungen. Eine Befruchtung und die anschließende Samenbildung wird damit erschwert, wenn nicht gar verhindert. [1] Strahlung ihrerseits schädigt ggf. das Erbgut, so dass erfolgreich gebildete Samen am Ende vielleicht gar nicht keimen oder unbrauchbare Pflanzen hervorbringen. [2]

V3PO

Es gibt jedoch eine Alternative bzw. Ergänzung zur generativen Vermehrung über Befruchtung und Samen: Die sogenannte vegetative Vermehrung, also den Anbau aus Stecklingen etc. Vegetative Vermehrung ist quasi das „What You See Is What You Get“ der Botanik: Ein abgetrennter Steckling hat zwangsläufig dieselben Erbanlagen und – gleiche Umweltbedingungen vorausgesetzt – dieselben Eigenschaften wie das Exemplar, von dem er stammt. Die aus ihm entstehende Pflanze ist ein Klon. Man steckt ihn in eine Nährlösung (oft reicht auch schon einfaches Wasser), wartet, bis er erste Wurzeln hat, pflanzt ihn dann an seinen Bestimmungsort und lässt ihn weiter wachsen. Fertig. Das hat wahrscheinlich jeder von uns schon mal irgendwann mit irgendeiner Pflanze gemacht. In vielen Fällen geht das ziemlich schnell, und einige Pflanzen erledigen dies sogar ganz von alleine. Erdbeeren oder Vallisnerien beispielsweise über ihr sogenanntes Rhizom, oder sämtliche Zwiebelgewächse über ihre Brutzwiebeln.

Die Frage ist nur, ob man den Steckling auch im Orbit bzw. im All dazu bringen kann, sich zu einer kompletten Pflanze weiter zu entwickeln. Hierüber macht sich zur Zeit ein Schülerteam aus Ravensburg Gedanken. Ihr Projekt „V3PO“ steht für „Vegetative Vermehrungsfähigkeit Von Pflanzen im Orbit“ und wird – falls die Finanzierung klappt – demnächst Teil des NASA Education Programms auf der ISS sein.

Ist es möglich, auf einer Raumstation pflanzliche Nahrungsmittel in einer größeren Menge mit gleicher Qualität zu produzieren und damit die Versorgung der Astronauten mit frischem Gemüse auf langen Missionen gewährleisten zu können? (…) Im Gegensatz [zur generativen Vermehrung] kann durch die vegetative Vermehrung (z.B. Stecklinge) ein einheitlicher Bestand erreicht werden. Zudem gewährleistet die vegetative Vermehrung den Bestand auch dann, wenn Pflanzen nur wenig, schlecht keimfähige oder gar keine Samen hervorbringen. (Quelle: https://www.sciencestarter.de/v3po)

Die Schüler beschäftigen sich hauptsächlich mit der Frage, ob Stecklinge unter Schwerelosigkeit ausreichend Wurzeln und Knospen ausbilden und ob diese sich korrekt im Raum orientieren werden. Bisherige Versuche weisen darauf hin, dass ihr Experiment gute Chancen auf Erfolg hat. Süßkartoffel-Stecklinge zum Beispiel bildeten in einem ähnlichen Experiment sogar mehr und längere Wurzeln aus als die Kontrollgruppe auf der Erde:

Bisherige Erkenntnisse

All stem cuttings produced adventitious roots and growth was quite vigorous in both ground-based and flight samples and, except for a slight browning of some root tips in the flight samples, all stem cuttings appeared normal. The roots on the flight cuttings tended to grow in random directions. Also, stem cuttings grown in microgravity had more roots and greater total root length than ground-based controls. (…) Despite the greater accumulation of carbohydrates in the stems, and greater root growth in the flight cuttings, overall results showed minimal differences in cell development between space flight and ground-based tissues. This suggests that the space flight environment did not adversely impact sweetpotato metabolism and that vegetative cuttings should be an acceptable approach for propagating sweetpotato plants for space applications. [3]

Zwar waren die Wurzeln nicht normal ausgerichtet, aber Versuche mit anderen Pflanzen wie Schaumkresse (Arabidopsis) haben ergeben, dass sich die Wachstumsrichtung unter Umständen durch passende Beleuchtung korrigieren lässt:

Skewing and waving, thought to be gravity dependent phenomena, occur in spaceflight plants. In the presence of an orienting light source, phenotypic trends in skewing are gravity independent (…) [4]

Das V3PO-Team hat sich für Ficus Pumila, eine Feigenart, als Versuchsobjekt entschieden. Auch hier sind sicherlich interessante Erkenntnisse zu erwarten, denn es bilden nicht alle Stecklinge aller Pflanzenarten gleichermaßen bereitwillig Wurzeln aus. Bei manchen geht es sehr schnell, bei anderen dauert der Prozess sehr lange. Dies lässt sich notfalls allerdings chemisch beschleunigen, wie man schon seit 1957 weiß [5]. Es ist dazu nicht einmal notwendig, Stecklinge im ursprünglichen Sinn, also ganze Blätter, Sprosse etc., zu verwenden. Schon ein relativ kleines, aus einem Blatt ausgestanztes Teil kann durchaus wieder zu einer ganzen Pflanze heranwachsen. Im Extremfall reichen einzelne Zellen. Auf diese Weise wäre es im Prinzip möglich, aus einer einzigen Mutterpflanze in relativ kurzer Zeit eine ganze Plantage entstehen zu lassen. [6]

Vor- und Nachteile

Bei langsam keimenden Pflanzen oder auch solchen, die gar nur einmal im Leben blühen und Samen bilden, ist die vegetative Vermehrung in der Tat eine gute Option, um die Besatzung eines Raumfahrzeugs schneller mit den gewünschten Pflanzen in gleichbleibender Qualität zu versorgen. Anbau und Ernte werden bzgl. Dauer und Umfang besser planbar und gehen zügiger vonstatten. Zudem hat man es direkt mit vergleichsweise robusten, adulten Pflanzen zu tun, statt mit empfindlichen Keimlingen. Auch die Gefahr, dass Strahlungsschäden eine ganze Generation unbrauchbar machen, ist reduziert. Sie können zwar an einzelnen Teilen einer Pflanze auftreten, aber in den meisten Fällen wird man noch genügend gesunde Teile übrig haben, die man weiterverwenden kann.

Ist vegetative Vermehrung nun also das Nonplusultra des Pflanzenanbaus im All? Ich denke nicht. Bei Pflanzen wie z. B. Getreide oder anderen schnell keimenden Arten (Kresse!) ist es wahrscheinlich ohnehin sinniger, direkt Samen zu verwenden und auf die vegetative Vermehrung nur bei Fehlentwicklungen zurück zu greifen. Auch Neuzüchtungen werden in vielen Fällen die generative Vermehrung erfordern. Hinzu kommt: Genetische Vielfalt durch generative Vermehrung hat einen nicht zu unterschätzenden Wert. Gerade in einem Umfeld wie einem Raumfahrzeug, wo Nachschub schwer zu organisieren ist. Stellen wir uns vor, wir sind unterwegs zum Mars oder noch weiter und es bricht eine Krankheit unter einer Pflanzenart aus. Oder man entdeckt erst mit einiger zeitlicher Verzögerung eine unerwünschte Eigenschaft wie Fäulnisanfälligkeit an der Originalpflanze. Wenn alle Jungpflanzen nun von diesem einen Exemplar geklont wurden, wird man in solchen Fällen Mühe haben, den Bestand zu retten. Hat man aber weitere Exemplare bzw. Samen mit anderem Genom, stehen die Chancen ganz gut, dass sich darunter brauchbarer Ersatz findet. Klonen kann man zur Not immer noch. Es ist aber wie schon angedeutet auch gar keine Frage von entweder – oder, generativ oder vegetativ. Beides kann gleichzeitig oder nacheinander erfolgen; die Methoden ergänzen einander.

Wer das Projekt der Schüler unterstüzten möchte, kann das über ihre Sciencestarter-Seite tun, wer den Fortschritt verfolgen möchte, findet sie auf Twitter unter @JufoV3PO. In jedem Fall wünsche ich dem Team allen erdenklichen Erfolg bei der Finanzierung und Durchführung!

………………….

[1] http://www.livescience.com/27868-plant-sex-zero-gravity.html

[2] http://www.spacesafetymagazine.com/2012/09/04/chinese-space-radiation-mutate-food-crops/

[3] Mortley, Bonsi et al.: „Influence of Microgravity Environment on Root Growth, Soluble Sugars, and Starch Concentration of Sweetpotato Stem Cuttings„, J Am Soc Hortic Sci. 2008 May 1; 133(3): 327–332.

[4] http://www.biomedcentral.com/1471-2229/12/232

[5] Skoog F, Miller CO: „Chemical regulation of growth and organ formation in plant tissue cultured in vitro. Symposia of the Society for Experimental Biology 1957;11:118-131., zitiert in [6]

[6] Ray J. Rose1, Xin-Ding Wang1, Kim E. Nolan1 and Barry G. Rolfe2, „Root meristems in Medicago truncatula tissue culture arise from vascular-derived procambial-like cells in a process regulated by ethylene„, J. Exp. Bot. (2006) 57 (10): 2227-2235. doi: 10.1093/jxb/erj187

Advertisements

The Final Frontier? – Teil II

Wer über Generationenschiffe nachdenkt, kommt nicht um die Frage herum, wie es im All mit der Fortpflanzungsfähigkeit aussieht. Bei den rein technischen Aspekten, dem Sex an sich also, können wir wohl getrost auf den menschlichen Einfallsreichtum vertrauen. Bei Befruchtung, Schwangerschaft und Geburt wird’s hingegen schon etwas kniffliger.

Ein Faktor für Probleme ist ganz simpel der Stress. Viele Frauen werden bestätigen können, dass körperliche und psychische Belastung den Zyklus erheblich beeinträchtigen kann. Ähnliches gilt für die Libido bzw. den Testosteronspiegel bei Männern. Hier wäre es ggf. erforderlich, über eine Hormoneinnahme gegenzusteuern. [1]

Eier legende und wirbellose Lebewesen scheinen zumindest, was die reine Befruchtung in vivo angeht, hingegen weniger Probleme zu haben. (Die Entwicklung von Embryo bzw. Fötus ist allerdings eine andere Sache, wie wir noch sehen werden.)

So far, several experiments on reproduction in such environments have been reported using sea urchins, fish, amphibians and birds, and the fertilization rates were similar to those found in controls at normal gravity (1g) (…). However, unlike the other taxa studied to date, mammalian reproduction is complicated and highly specialized. [2]

Da hätten wir bei Säugetieren zunächst die Frage der Qualität von Spermien und Eizellen. Sie sind im All erhöhter Strahlung ausgesetzt – Spermien noch mehr als Eizellen -, so dass wir eine Schädigung des Erbmaterials nicht ausschließen können. Bei längeren Aufenthalten im All (wir erinnern uns: Strahlungsrisiken sind über die Zeit kumulativ) könnte dies entweder zu eingeschränkter Fruchtbarkeit bzw. kompletter Unfruchtbarkeit führen, zu Fehlgeburten oder zu Schäden am Organismus des Kindes.

Zwar kann man Strahlungseinwirkung durch entsprechend angepasste Fahrzeuge und Kleidung erheblich reduzieren, aber leider ist es damit alleine noch nicht getan. Studien mit Mäusen haben gezeigt, dass auch die Schwerelosigkeit ein Problem darstellt. Die Eizellen lassen sich zwar in vitro befruchten, nisten sich jedoch unter Mikrogravitation wesentlich schlechter ein als bei der Kontrollgruppe unter 1g. Konkret bilden sie zu wenig Trophektoderm-Zellen. Das sind die Zellen, aus denen sich die Plazenta entwickelt. Infolgedessen treten Schwangerschaften gar nicht erst ein oder die Embryonen werden nach einiger Zeit vom Körper der Mutter resorbiert. Studien mit Ratten wiederum weisen außerdem bei den Männchen auf geringere Spermienzahl und -qualität unter Mikrogravitation hin, was wiederum die Befruchtung an sich beeinträchtigt. [2]

Weitere Forschungsergebnisse deuten in die selbe Richtung. So stellte Joseph Tash von der Universität Kansas fest, dass Mikrogravitation die Aktivierung von Enzymen verlangsamt. Von ihm untersuchtes Seeigelsperma erwies sich als quasi hyperaktiv, eine Beobachtung, die auch auf Bullensperma zuzutreffen scheint. Die Ursache liegt zumindest beim Seeigelsperma darin, dass das Enzym, das einen Bewegungsstop veranlasst, unter Schwerelosigkeit nur mit Verzögerung in Aktion tritt. Tash weist zu recht auf die Gefahr hin, dass dies auch auf weitere Enzyme zutreffen könnte, wie zum Beispiel bei der Abgabe der Spermien-DNA an die Eizelle. [3, 4] Problematisch ist also unter Mikrogravitation nicht nur die jeweilige Qualität, sondern auch das Zusammenspiel der Keimzellen.

Wahrscheinlich haben wir hier einen der Gründe, warum z.B. 1979 keine der Ratten, die die sowjetische Raumfahrtagentur in ihrem Biosatelliten Kosmos-1129 in den Orbit geschossen hatte, schwanger wieder auf der Erde ankam. Alle Ratten, die an diesem Experiment beteiligt waren, konnten sich jedoch anschließend mit neuen Partnern unter normalen Bedingungen problemlos fortpflanzen. Allerdings erst nach einigen Monaten, mit Spermien, die wieder unter 1g entstanden waren. Die Spermien, die noch aus der Zeit der Erdumrundung stammten, zeugten auch auf der Erde noch schwer beeinträchtigten und zum Teil lebensunfähigen Nachwuchs: „Abnormalities included physical retardation, showed growth retardation, hemorrhages, hydrocephaly, ectopic kidneys, and enlargement of the bladder.“ [5] Die selbe Studie weist darauf hin, dass die Neugeborenen ein geringeres Geburtsgewicht haben, die Geburt an sich länger dauert und selbst in der 2. Generation die Sterblichkeitsrate der Babys noch erhöht ist.

Doch damit nicht genug, denn es ist sogar bei den Tieren mit Problemen zu rechnen, bei denen die Befruchtung unter Mikrogravitation relativ problemlos klappt. Wie zum Beispiel bei Zebrafischen: „Gross observations and morphometric analyses show that exposure to simulated microgravity results in stunted growth, reduced ossification and severe distortion of some skeletal elements.“ [6]

Die Keimzellentwicklung und auch die Befruchtung unter Schwerelosigkeit führen also zu zahlreichen Problemen. Was aber, wenn man stattdessen bereits schwangere Tiere der Mikrogravitation aussetzt, bei denen Keimzellentwicklung und Einnistung noch bei 1g stattgefunden hat? Leider sieht es hier nicht viel besser aus. Bedenkliche Resultate finden sich u.a. bei Ratten, die ca. 10 Tage nach der Befruchtung ins All befördert und nur kurz vor der Geburt ihres Wurfes wieder zurück auf die Erde geholt wurden. Die Neugeborenen hatten u.a. Orientierungsschwierigkeiten und eine beeinträchtigte Motorik und konnten sich nicht vom Rücken auf den Bauch drehen. [7, 9] All dies ist auch unmittelbar für Menschen relevant. Denn spätestens in der 26 Schwangerschaftswoche hat ein menschlicher Fötus eine Masse erreicht, ab der er nicht mehr im Fruchtwasser suspendiert, sondern ebenfalls der Schwerkraft ausgesetzt ist. Fehlt dieser Faktor bis zur Geburt, befürchten Forscher u.a. auch eine anormale Muskelentwicklung (inklusive Herzfehler) und eine gestörte Knochenbildung. [8]

Nun haben aus naheliegenden Gründen natürlich noch keine entsprechenden Experimente mit Menschen stattgefunden. Aber man muss aus den bisherigen Forschungsergebnissen mit kleineren Säugetieren wohl bereits den Schluss ziehen, dass für unsere erfolgreiche Fortpflanzung im All nicht nur Strahlenschutz, sondern auch simulierte 1g-Schwerkraft unverzichtbar ist. Und zwar interessanterweise auch dann, wenn wir irgendwann in ferner Zukunft einen Planeten bevölkern sollten, der eine höhere Schwerkraft als die irdische besitzt. Denn Tash [3, 4] hat die für die Beweglichkeit der Spermien verantwortlichen Proteine in deren Flagellum identifiziert und auch nachgewiesen, dass bei > 1g die Beweglichkeit der Spermien geringer wäre als normal. Weitere Auswirkungen der Schwerkraft auf Fruchtbarkeit, Entwicklung des Kindes sowie die Schwangerschaft an sich sind ebenfalls mehr als wahrscheinlich: „In fact several studies have shown that (…) prolonged exposure to hypergravity from conception to weaning causes permanent deficits in gravity-dependent righting behaviors. Data on hypergravity and microgravity exposure suggest some changes in the otolith formation during development, in particular the size although these changes may actually vary with the species involved.“ [9]

Eine Anpassung (via Selektion) an die jeweiligen örtlichen Gegebenheiten würde vermutlich viele Generationen dauern und zahlreiche Hilfsmaßnahmen und -mittel erfordern. Viele Individuen wären erforderlich, um den Fortbestand der Spezies über so viele Generationen hinweg überhaupt zu gewährleisten. Eventuell jedoch ist eine Besiedelung von Himmelskörpern, deren Schwerkraft zu sehr von der irdischen abweicht, aber auch gar nicht wirklich ratsam.

——————-
[1] AJ Tilbrook, AI Turner, IJ Clarke: „Effects of stress on reproduction in non-rodent mammals: the role of glucocorticoids and sex differences“, Rev Reprod May 1, 2000 5 105-113, doi: 10.1530/ror.0.0050105
[2] Sayaka Wakayama, Yumi Kawahara et al.: „Detrimental Effects of Microgravity on Mouse Preimplantation Development In Vitro“, PLoS ONE 4(8): e6753. doi:10.1371/journal.pone.0006753
[3] J. S. Tash, G. E. Bracho: „Microgravity alters protein phosphorylation changes during initiation of sea urchin sperm motility“ FASEB J. 13:S43-S54, 1999
[4] J. S. Tash, S. Kim et al.: „Fertilization of sea urchin eggs and sperm motility are negatively impacted under hypergravitational forces significant to space flight“ Biol.Reprod. 65 (4):1224-1231, 2001
[5] Serova LV, Denisova LA et al., „Reproductive function of the male rat after a flight on the Kosmos-1129 biosatellite“, Kosmicheskaia Biologiia i Aviakosmicheskaia Meditsina [1982, 16(5):62-65]
[6] Edsall SC, Franz-Odendaal TA: „An assessment of the long-term effects of simulated microgravity on cranial neural crest cells in zebrafish embryos with a focus on the adult skeleton.“, PLoS ONE PMID:24586670, DOI: 10.1371/journal.pone.0089296
[7] Serova LV, Denisova LA et al.: „General characteristics of an experiment to study the ontogeny of rats on board the Kosmos-1514 biosatellite“, Kosmicheskaia Biologiia i Aviakosmicheskaia Meditsina [1985, 19(2):49-53]
[8] Patricia A. Santy, Richard T. Jennings: „Human Reproductive Issues in Space“, Advances in Space Research, Volume 12, Issues 2–3, 1992, Pages 151–155, DOI: 10.1016/0273-1177(92)90102-4
[9] Bruce, Fritzsch: „The development of vestibular connections in rat embryos in microgravity“, Journal of Gravitational Physiology : a Journal of the International Society for Gravitational Physiology 1997, 4(2), S. 59 ff

Mars One – „Big Brother“ auf dem Nachbarplaneten

In meinem letzten Posting erwähnte ich im Fazit, dass eventuellen Interstellarreisen und der Besiedelung von Exoplaneten entsprechende Experimente innerhalb unseres eigenen Sonnensystems vorausgehen sollten. Nun sieht es so aus, als solle ein solches Projekt im kleinen Maßstab Gegenstand einer Reality-Soap werden.

Richtig gelesen: Die niederländische Stiftung „Mars One“ sucht ab sofort Bewerber für eine Mission, in deren Verlauf eine Marskolonie aufgebaut werden soll. Im Abstand von zwei Jahren sollen jeweils weitere Kandidaten und Material folgen; die Fortschritte während der Reise und vor Ort sollen ähnlich wie bei „Big Brother“ im Fernsehen übertragen werden. Finanziert wird das ca. 6 Milliarden Dollar teure Projekt durch die Übertragungsrechte und Spenden.

Eine Rückreise der Kandidaten ist nicht vorgesehen. Wer einmal dort ist, bleibt auch dort. Bas Lansdorp, der Mitbegründer von Mars One, begründet dies damit, dass der menschliche Körper sich nach dem langen Flug und dem Aufenthalt auf unserem Nachbarplaneten nicht wieder an die Schwerkraft der Erde anpassen könne. [1]

Ich persönlich halte diese Begründung spontan für nicht ganz plausibel, denn man könnte die ca. achtmonatige Rückreise durch entsprechend konzipierte Raumfahrzeuge durchaus dazu nutzen, den Körper sukzessive wieder auf die Schwerkraft der Erde vorzubereiten. Auch dem vorhergesagten Muskel- und Knochenschwund kann man durch Sport entgegenwirken. Denkbar wäre eher, dass irgendwann das Immunsystem schlapp macht, je nach Gesamtdauer der Reise. [2] Wie das Beispiel von Valeri Poljakow zeigt, wäre jedoch eine Rückreise nach kurzem Aufenthalt höchstwahrscheinlich sehr wohl möglich. Poljakow ist mit über 14 Monaten an Bord der „MIR“ Rekordhalter für den längsten Aufenthalt in Schwerelosigkeit. Er hat trotz einer Übergangsphase mit gewissen körperlichen und psychischen Anpassungsschwierigkeiten offenbar keinerlei bleibende Schäden davongetragen. [3]

Wie man dem BBC-Artikel entnehmen kann, sind einige Experten dennoch skeptisch, was Mars One angeht. Insbesondere die stark schwankenden Temperaturen, die Abwesenheit von flüssigem Wasser und das Strahlungslevel empfindet Dr Veronica Bray von der Universität Arizona als problematisch.[1] Dies deckt sich mit jüngsten Berichten, dass (wenig überraschend…) stärkere Strahlungseinwirkung mit einem erhöhten Krebsrisiko einher geht. [4] Um dem entgegen zu wirken, sollen die Habitate auf dem Mars mit einigen Metern Erde bedeckt werden. Den Ausblick auf die Marslandschaft werden die Kolonisten also wohl nur in Raumanzügen außerhalb ihrer Wohnkapseln genießen können.

Auch von Seiten einiger Astronauten gibt es Bedenken. Sie betreffen vor allem die langfristige Funktionstüchtigkeit der Lebenserhaltungssysteme. Dennoch heißt es über NASA-Astronaut Stan Love:

„Although dubious about the funding, the technology and the impact of radiation, Love applauds small enterprises like Mars One.

He strongly believes private organisations will help raise awareness and hopefully discover or design some technology which will help future teams reach their goal of landing on Mars.“

(Quelle: „Applicants wanted for a one-way ticket to Mars„)

Ich persönlich bin jedenfalls sehr gespannt, wie es mit Mars One weitergeht. Vermutlich wird dies die erste Reality-Soap, die ich mir freiwillig ansehe. Falls sie denn zustande kommt.

——————-
[1] http://www.bbc.co.uk/news/science-environment-22146456
[2] http://www.kommunikation.uzh.ch/publications/magazin/magazin-12-1/Magazin-2012-1-18.pdf
[3] http://www.tandfonline.com/doi/abs/10.1080/001401398186991
[4] http://explore.georgetown.edu/news/?ID=70072&PageTemplateID=295

Raumfahrzeuge für Interstellarreisen – II –

Wie sich im ersten Teil dieses Postings gezeigt hat, wäre ein Schiff zu einem anderen Sonnensystem in jedem Fall ein Generationenschiff und müsste einigen tausend Menschen über mehrere Jahrhunderte hinweg eine Lebensbasis bieten.

Es gibt zwar Überlegungen, die Schiffe mit gefrorenen Embryonen oder erwachsenen Menschen in Stasis zu bemannen (sog. Schläferschiffe), jedoch gibt es bisher noch keinerlei Möglichkeit, Embryonen außerhalb des Mutterleibes voll auszutragen und vor allem anschließend ohne menschliche Unterstützung zu körperlich, psychisch und kognitiv voll entwickelten Frauen und Männern heranwachsen zu lassen. Bei der Stasismethode sehe ich wiederum Probleme mit dem Zustand der Besatzung nach derart vielen Jahren. Die Erfahrungen mit langjährigen Komapatienten nach deren Erwachen legen meines Erachtens den Schluss nahe, dass mit erheblichen körperlichen und kognitiven Defiziten zu rechnen wäre, welche den erfolgreichen Abschluss der Mission in Frage stellen würden. Darüber hinaus wäre an Bord solcher Schiffe die Instandhaltung komplett von einer Selbstanalyse und -reparatur des Systems abhängig. Es würde ein beträchtliches Risiko für den Erfolg der Mission darstellen, sich hierauf über Jahrhunderte hinweg verlassen zu müssen. Die am meisten Erfolg versprechende Methode dürfte derzeit also noch immer eine „normal“ lebende Besatzung sein.

Hieraus ergeben sich die Grundanforderungen wie Sauerstoffversorgung, Nahrung, Behausung, medizinische Versorgung, Industrie etc., die an ein derartiges Raumfahrzeug gestellt werden, unabhängig von seinem ultimativen Zweck am Zielort. Benötigt werden also mindestens zwei Komponenten: Antrieb und Habitat.

Antrieb
Als Antrieb wären aktuell Sonnensegel, Ionenantrieb (siehe auch => hier) und ggf. zusätzliche gravitationsgestützte Antriebe möglich. Aufgrund ihrer unterschiedlichen Funktionweise kann hier kein allgemeingültiges Design bzw. Position in der Konstruktion angegeben werden. Es sei nur angemerkt, dass sie allesamt weit langsamer als die für die Zukunft angestrebten 1% Lichtgeschwindigkeit sind. Ein Ionenantrieb ermöglicht derzeit nur ca. 150.000 km/h. Damit würde eine Reise zu Proxima Centauri über 3.000 Jahre dauern. Sonnenwind bietet zwar hohe Geschwindigkeiten, hat jedoch den Nachteil, dass er nur eine Reichweite von ca. 4 Plutobahnradien aufweist. Ähnliches gilt für den gravitationsgestützten Antrieb: Ohne Himmelskörper keine Gravitation. Sollte die Menschheit jedoch jemals ein Generationenschiff bauen, so ist davon auszugehen, dass sich bis dahin auch eine geeignete Antriebsart gefunden hat. Dies legen wir also als Annahme für den weiteren Text zugrunde. Vielversprechende Ansätze werden hier recht anschaulich erklärt: Erkenntnishorizont, „Antriebe Morgen“

Habitat

By Don Davis (NASA Ames Research Center (ID AC76-0525)) [Public domain], via Wikimedia Commons

By Don Davis (NASA Ames Research Center (ID AC76-0525)) [Public domain], via Wikimedia Commons

Eines der momentan favorisierten Designs für das Habitat ist der sogenannte „Stanford Torus“ in diversen Formen. Ihn muss man sich prinzipiell wie einen innen hohlen Ring oder Doughnut vorstellen, in dessen Hohlraum die Komponenten der Biosphäre angesiedelt sind.

Wie eine derartige Biosphäre von innen aussehen könnte, zeigen => diese Ilustrationen besonders anschaulich.

Ein anderes, prinzipiell ähnliches Design findet sich im Wayland report (PDF):

„The habitable volume of space vehicles will (…) consist of pressurised modules at the ends of long arms on which they rotate about the centreline of the vehicle, together with another module on the centreline offering weightless conditions, this configuration being more economical of mass than a rotating cylinder or torus.“ (Eine Skizze befindet sich auf Seite 2. des Dokuments)

Beide Entwürfe haben gemeinsam, dass das Habitat jeweils um eine Mittelachse rotiert, um Gravitation zu simulieren. Dies ist notwendig, um Muskel- und Knochenschwund sowie Herz- und Kreislaufschwächen sowie weitere unerwünschte Anpassungen des Körpers an die Schwerelosigkeit zu vermeiden. Die Anordnung um eine Mittelachse ermöglicht auch das Einrichten von Zonen mit geringerer bzw. ganz ohne Schwerkraft, je mehr man sich durch die Verbindungsstege der Mittelachse des Raumfahrzeugs nähert.

Jeder der Entwürfe bietet jedoch trotz dieser Gemeinsamkeiten unterschiedliche Vor- und Nachteile. Auch wenn er nach bisherigen Berechnungen weniger wirtschaftlich wäre, könnte man z.B. dennoch dem Torus den Vorzug geben, da man davon ausgehen kann, dass sein großer Durchmesser ein besseres Gefühl von Weite vermitteln würde. Er wäre somit der Psyche der Besatzung zuträglicher, als eine Anzahl einzelner kleinerer Habitate. Dieser Faktor ist bei einer derart langen Reise nicht zu vernachlässigen, denn anders als bei kurzen Trips ins All kann man bei einem Generationenschiff die Besatzung nicht auf Jahrhunderte im voraus auf ihre psychische Eignung testen. Den einen oder anderen Klaustrophobiker wird es an Bord also zwangsläufig irgendwann geben. Auch der Transport von Waren und Lebewesen innerhalb der Biosphäre wäre im Torus leichter umzusetzen. Hinzu kommt im Torus ein geringeres Risiko, dass sich an Bord einzelne „Nationen“ bilden und voneinander abgrenzen. Andererseits stellt eine Aufteilung des Habitats auf mehrere Einzelmodule, wie beim Wayland-Modell, wiederum eine Risikominderung dar und wäre von Vorteil, falls es auf dem Flug zu Beschädigungen kommen sollte.

Die Verbindungsstreben von der Peripherie zum Zentrum stellt sich der Autor des Wayland-Reports folgendermaßen vor:

„The arms need to have either a pressurised tunnel for access to the centre, or small lift cars which run up and down; here the latter is assumed. A system for pumping ballast water between the centre and the periphery maintains the centre of gravity at the geometrical centreline, minimising wear on the bearings (if any) of the rotating structure and holding the centreline steady for ferry vehicles to dock. (…) suitable arm length and spin rate have yet to be determined by practical tests. Too short a lever arm or too fast a rate of spin will presumably make the occupants giddy and nauseous.“

Ich persönlich fände es sinnvoll, nach Möglichkeit die einzelnen Habitat-Elemente auch seitwärts noch untereinander zu verbinden. Erstens, um im Beschädigungsfall noch schneller evakuieren zu können. Zweitens, um mehr Interaktion zwischen den Habitaten zu ermöglichen. Ob dies vom Gesichtspunkt der Stabilität aus jedoch machbar ist, entzieht sich meiner Kenntnis.

Material
Es stellt sich die Frage, aus welchen Materialien ein solches Raumfahrzeug gebaut werden müsste, um sowohl die nötige Lebensdauer zu gewährleisten als auch reparierbar zu bleiben. Neben den herkömmlichen Metallen und Mineralien, die man während der Reise auch aus Asteroiden etc. gewinnen könnte, wäre es von Vorteil, ergänzend auch auf „intelligente“, und/oder sich selbst regenerierende Werkstoffe zurückzugreifen [1]:

„Perhaps it is possible to use the innate „force“ of different kinds of materials to create an artificial nature, which can shape streams of material flow to create a living interior that is capable of regeneration and is not simply waiting to be consumed by its human colony.“ (Rachel Armstrong: „Designing a Sustainable Interstellar Worldship

Hier würden sich lt. Armstrong beispielsweise Protozellen ebenso anbieten wie andere Stoffe aus der sogenannten synthetischen Biologie. Mit dem „Project Persephone“ hat man bereits begonnen, diese Möglichkeiten auszuloten.

Auch Reparaturen am Raumschiff sollten nach Möglichkeit automatisch durchgeführt werden, um sicherzustellen, dass jederzeit ein Maximum aller Komponenten intakt und funktionstüchtig ist:

Due to its size and trip duration, world ship reliability is a vital feasibility issue as well. From a rough analysis using current spacecraft reliability data and the Deadalus mass breakdown model, it was concluded that 99.99% reliability is very difficult to achieve and an automated repair facility is required. [2]

Nichtsdestotrotz benötigt man an Bord jederzeit eine angemessene Anzahl qualifizierter Fachleute, die die Reparaturarbeiten überwachen und nötigenfalls korrigieren können und zudem ihr Wissen an die nächsten Generationen weitergeben. Der Faktor „Mensch“ ist auch hier unverzichtbar.

Strahlenschutz

Galaxie

Bildquelle: NASA

Wo auch immer an Bord sich Lebewesen befinden, muss zudem eine Abschirmung gegen kosmische Strahlung gewährleistet sein. Während wir auf der Erde durch Atmosphäre und Magnetfeld gegen diese Strahlung relativ gut abgeschirmt sind, trifft uns im All die ca. 100- bis 200fache Dosis. Abhilfe schaffen könnte hier beispielsweise ein Schild aus Plasma:

„Wie eine Blase soll das Gas aus geladenen Teilchen dabei den Teil des Raumschiffs umgeben, in dem die Besatzung untergebracht ist. Das damit verbundene Magnetfeld wäre ein ebenso effektiver Schutz vor kosmischer Strahlung wie eine mehrere Zentimeter dicke Aluminiumschicht, würde jedoch lediglich ein paar Gramm wiegen.“
Quelle: http://www.wissenschaft.de/wissenschaft/news/267551

Plasmaschilde sind jedoch nur für einige Konstruktionen eine Option. Ob die Form eines Stanford-Torus mit dieser Methode kompatibel ist, bezweifle ich persönlich. Denkbar wäre in solchen Fällen evtl. eine Art „Zwischenwand“ aus Wasser[3] bzw. Eis oder anderem abschirmendem Material in der Hülle des Raumschiffs, falls diese nicht an sich schon dick genug sein sollte.

Wie man sieht, stellt ein Raumschiff für interstellaren Personentransport gänzlich andere Ansprüche an das Design als beispielsweise eine Raumstation. Bei voraussichtlichen Ausmaßen von mehreren bzw. mehreren Dutzend Kilometern in Länge und Breite, fallen bei Raumschiffen insbesondere Widerstandsfähigkeit, möglichst schnelles Fortkommen und Manövrierbarkeit mehr ins Gewicht als bei Stationen im Orbit. Ebensowenig wie man eine Raumstation als Raumschiff nutzen kann, ist dies jedoch auf längere Zeit umgekehrt möglich.

Zusätzliche Nutzlast
Je nach Zweck der Mission muss neben dem Habitat auch Raum für Materialien, Transportmittel und Werkzeuge zur Verfügung stehen. Egal ob der Zweck der Mission darin besteht, lediglich eine Raumstation zu bauen, einen Planeten bewohnbar zu machen, oder einen bereits bewohnbaren Planeten direkt zu besiedeln – es werden auf jeden Fall Vorarbeiten wie Tagebau und Weiterverarbeitung der gewonnenen Rohstoffe anfallen, für die man bei der Ankunft bereits ausgerüstet sein sollte. Höchstwahrscheinlich muss man in fast jedem Fall auch zunächst eine Raumstation im Orbit errichten, von der aus man die Besiedelung der neuen Kolonie vorantreiben und koordinieren kann.

All dies dürfte nach der Reise nochmals mehrere Jahrzehnte vor Ort in Anspruch nehmen. Es stellt sich daher die Frage, ob diese Zwischenschritte nicht evtl. auch vorab von unbemannten Sonden erledigt werden können. Von sogenannten „Precursor Probes“, die man dem eigentlichen Generationenschiff voraus schickt, um selbst erst dann am Ziel anzukommen, wenn die neue Kolonie bereits konstruiert und bewohnbar gemacht wurde. Wenn Roboter inzwischen schon Hochhäuser bauen, warum nicht auch ganze Raumstationen? Diese Vorgehensweise wäre kaum kostenintensiver als der eigenhändige Neubau vor Ort. Es wäre sogar denkbar, in zeitlichem Abstand mehrere dieser Sonden vorauszuschicken. Z.B. eine, die zunächst Terraforming betreibt, dann eine zweite, die die Kolonie aufbaut. Anschließend würde das eigentliche Schiff folgen, dessen Besatzung ihr Ziel direkt besiedeln könnte.

Kommunikation

Lunar Atmosphere and Dust Environment Explorer

LADEE – Quelle: NASA

Leider hat diese Sache einen recht großen Haken: Die Kommunikation zwischen Proben, Schiff und Erde. Nicht nur ist die Übermittlung bisheriger Radiosignale störanfällig, sondern man kann diese Signale zudem über diese Entfernung schlicht zu schlecht fokussieren. Falls die Sonde oder das Schiff unterwegs oder vor Ort auf irgendwelche Schwierigkeiten stoßen sollte, würde man es vermutlich nie erfahren. Selbst Relais-Stationen wären bei der benötigten Anzahl auf einer derartigen Strecke leider keine Option.

Auch Kommunikation per Laser fällt leider raus. Auf eine Distanz von mehreren Lichtjahren kann man mit den bisher zur Verfügung stehenden Kenntnissen und Techniken keinen Laser akkurat genug ausrichten, um damit noch das Ziel zu erreichen.[4]

Fazit
Angesichts all dieser Schwierigkeiten stellt sich die Frage, ob es sich überhaupt lohnt, ein solches Projekt in Angriff zu nehmen. Fest steht m. E., dass einem derartigen Unterfangen langjährige Erfahrungen mit Biosphären in kleinerem Maßstab vorausgehen müssen. Denkbar wäre vielleicht zunächst ein Raumschiff, das sich nur innerhalb unseres eigenen Sonnensystems bewegt und dessen Besatzung man ggf. evakuieren und zur Erde zurücktransportieren könnte. Selbst wenn am Ende solcher Experimente kein Interstellar-Raumschiff stehen sollte, würden sie doch unschätzbar wertvolle Einblicke in die „Funktionsweise“ von Öko- und Sozialsystemen liefern.*) Das wiederum führt höchstwahrscheinlich nebenbei zu nützlichen Spinoffs und hoffentlich besserem Umweltschutz für das terrestrische Leben.

Wie man sieht, handelt es sich beim Thema Schiffe für die interstellare Raumfahrt um ein sehr großes Themengebiet, das in ein oder zwei Blogposts nur angerissen werden kann. Eigentlich würde jeder einzelne angesprochene Aspekt einen eigenen Eintrag verdienen. Ich freue mich daher über Hinweise in den Kommentaren, welche Teilbereiche für meine Leser am interessantesten sind, so dass ich diese ggf. aufgreifen und detaillierter darstellen kann.
—————

*) Das Buch „Psychology of Space Exploration“ kann man sich => hier übrigens als PDF herunterladen.

[1] http://news.discovery.com/space/private-spaceflight/project-persephone-icarus-interstellar-100yss-120920.htm

[2] http://www.academia.edu/2111006/A.M._Hein_M._Pak_D._Putz_C._Buhler_P._Reiss_World_Ships_-_Architecture_and_Feasibility_Revisited_

[3] Vielen Dank für den Hinweis an Lars Fischer

[4] http://www.academia.edu/2086485/Interstellar_Communication_Techniques_for_Long_Range_Mission_Spacecraft
sowie http://news.discovery.com/space/project-icarus-interstellar-communications-120206.htm

Pflanzen als Teil des Lebenserhaltungssystems an Bord

Mit zunehmender Länge der bemannten Missionen stehen Raumfahrer vor neuen Problemen. Interplanetare Flüge oder längere Aufenthalte in Raumstationen erfordern z.B. die Wiederaufbereitung von Luft und Wasser. Aber auch die Nahrungsmittelfrage ist nicht unerheblich, denn Proviant für über 500 Tage (die voraussichtliche Flugdauer einer bemannten Marsmission) würde in den meisten Fällen die zur Verfügung stehenden Kapazitäten sprengen.

Zumindest für diese drei Problemstellungen bieten sich Pflanzen als Lösung an. Sie können nicht nur Sauerstoff herstellen, Kohlendioxid abbauen und sogenanntes Grauwasser wiederaufbereiten, sondern auch als Nahrungsmittel dienen. Überdies haben Pflanzen auf die Besatzung von Raumfahrzeugen auch einen stimmungsaufhellenden Effekt. Prinzipiell sind sie also die perfekte Ergänzung zum Lebewesen Mensch.

Quelle: NASA

Quelle: NASA

Ganz aktuell, nämlich seit dem 1. März 2013, läuft auf der ISS hierzu wieder einmal eine Reihe von Experimenten in Kooperation zwischen ESA und NASA (siehe auch => hier und hier), weshalb ich diesem wichtigen Thema auch einen eigenen Blogeintrag widme.

An Bord eines Raumfahrzeuges muss die Pflanze insgesamt eine beachtliche Anzahl von Bedingungen erfüllen:

Sie sollte schnell wachsen. Möglichst viele ihrer Bestandteile sollten essbar sein, sie sollten nicht zu hoch werden und widerstandsfähig sein gegen Krankheitsbefall. Darüber hinaus sollten sie jedoch auch mit relativ wenig Licht auskommen (wobei LEDs hier zunehmend für Abhilfe sorgen) und sich auch in der Schwerelosigkeit leicht in mehreren Generationen anbauen lassen.

Technik

Quelle: NASA

Adhäsion: Der Wassertropfen hält sich auf dem Blatt. Die Gasblase in der Mitte steigt aufgrund der Schwerelosigkeit nicht nach oben auf. Bildquelle: NASA

Genau hier lauern allerdings bereits weitere Schwierigkeiten. Ganz banal kann es in der Schwerelosigkeit zum Beispiel passieren, dass das Wasser, mit dem man eine Pflanze gießt, durch die Adhäsionskraft bedingt an deren Stengel hängen oder auf dem Substrat liegen bleibt, statt im Boden zu versickern. Man braucht also ein Substrat, das durch die Größe und Gleichmäßigkeit der Körnung diesen Effekt ausgleicht und das Wasser durch Kapillarkräfte nach unten zu den Wurzeln „saugt“. Gröbere Körnung würde die Wurzeln nicht versorgen, feinere Körung würde keine Luft mehr an dieselben lassen. Die optimale Größe liegt lt. Aussagen der NASA bei 1 bis 2 Millimeter; das entspricht in etwa feinerem Aquarienkies. Hieraus ergibt sich übrigens eine zusätzliche Bedingung: Die Pflanze darf bzgl. der Bodenbeschaffenheit nicht zu empfindlich sein.

Betrachtet man die Summe der Anforderungen, kommen bei weitem nicht alle Pflanzen für den Anbau im All in Frage. Experimentiert wird bisher mit bestimmten Sorten von Weizen, Tomaten, Spinat und einigen anderen Arten. [1]

Des weiteren muss die Besatzung dafür Sorge tragen, dass der von der Pflanze produzierte Sauerstoff sich in der Umgebung verteilt, statt sich um sie herum zu sammeln und sie somit vom benötigten Kohlendioxid abzuschneiden. Auch dies passiert in der Schwerelosigkeit nicht automatisch, kann jedoch mit einem Ventilator leicht gewährleistet werden.

Hat man diese rein technischen Herausforderungen überwunden, erwarten den Raumfahrer und seine Pflanzen jedoch noch weitere:

Wachstum
„Weiß“ eine Pflanze ohne Schwerkraft beispielsweise, in welche Richtung sie wachsen muss? Kennt sie „Oben und Unten“? Experimente mit der Art Arabidopsis an Bord der ISS haben gezeigt, dass diese Pflanze sich in jenem Punkt durchaus anpassen kann, auch wenn ihre Schwerkraftsensoren ausfallen. Eine geeignete Lichtquelle vorausgesetzt, richten sich die oberirdischen Teile der Pflanzen nach einer gewissen Übergangszeit nach dem Licht und die Wurzeln nach der Feuchtigkeit aus. Interessanterweise verhalten sich die Wurzeln zumindest bei Arabidopsis auch ohne Schwerkraft genauso wie beim Wachstum auf der Erde:

Skewing and waving, thought to be gravity dependent phenomena, occur in spaceflight plants. In the presence of an orienting light source, phenotypic trends in skewing are gravity independent (…) [2]

Dies bedeutet allerdings nach weiterer Aussage der Studien-Autoren leider nicht automatisch, dass alle anderen in Frage kommenden Arten oder auch nur alle Abkömmlinge einer einzelnen Art sich unter Schwerelosigkeit ebenso verhalten. Selbst bei sorgfältigster Auswahl und Planung des Anbaus an Bord von Raumfahrzeugen, kann deren Besatzung unliebsame Überraschungen und Rückschläge nicht völlig ausschließen.

Vermehrung

Quelle: NASA

Quelle: NASA

Zu klären wäre auch die Frage nach den nächsten Generationen. Während die Vermehrung bei Pflanzen, von denen man Stecklinge setzen kann, noch relativ leicht zu bewerkstelligen sein dürfte, gibt es im Fall von geschlechtlicher Fortpflanzung die eine oder andere Besonderheit, die evtl. zum Problem werden könnte. So hat sich zum Beispiel herausgestellt, dass die Pollenschläuche unter Schwerelosigkeit zwar auch in die richtige Richtung wachsen, dabei allerdings um ca. 8% dünner ausfallen als unter normalen Umständen. [3] Dies könnte zu Fehlschlägen bei Befruchtungsversuchen führen und somit zu unerwarteten Ernteausfällen bzw. dem Verlust ganzer Pflanzenarten an Bord. Ein Risiko, das man sich auf längeren Missionen absolut nicht leisten kann. In solchen Fällen wäre zu überlegen, ob man die Schwerkraft an Bord nicht mit Hilfe von Zentrifugen simulieren sollte, was allerdings wiederum den Energieverbrauch und den Platzbedarf steigen ließe.

Strahlung
Hat man die Pflanzen erfolgreich befruchtet, stellt sich bald die nächste Frage: Ist die nächste Generation brauchbar, oder hat sie durch die Weltraumstrahlung eventuell genetische Schäden davongetragen? Dass dies nicht auszuschließen ist, hat China jüngst bewiesen. Aus Samen, die dieser Strahlung mit voller Absicht ausgesetzt waren, zogen sie eine neue Generation Pflanzen heran, um aus diesen wiederum diejenigen mit profitablen spontanen Mutationen herauszusuchen und weiter zu züchten. Darunter befanden sich z.B. Salatgurken von enormer Länge. [4]

Die Mutationsrate derart bestrahlter Pflanzen ist einige hundert Mal so hoch wie auf der Erde. Allerdings produziert sie selbstverständlich bei weitem nicht nur erwünschte bzw. nützliche Mutationen. Zum Teil keimen die so behandelten Samen auch überhaupt nicht mehr, so dass man für Missionen, auf denen man auf Pflanzen angewiesen ist, unbedingt auch über eine bessere Abschirmung nachdenken muss, als eine Raumstation sie derzeit bietet. [5]

Andererseits haben jüngste Erfahrungen mit Flachs und Soja in radioaktiv verstrahlten Gebieten auf der Erde gezeigt, dass es durchaus auch weitgehend strahlungsresistene Pflanzen gibt, die sich ebenfalls für den Anbau an Bord eignen könnten. [6], [7], [8] Es stellt sich nun die Frage, ob man diese Eigenschaft ggf. auch auf andere Arten übertragen könnte, ohne damit deren Nutzen für die Astronauten zu kompromittieren.

Fazit
Angesichts all dieser Problemstellungen ist es derzeit  zumindest riskant, eine länger währende Mission von Pflanzen an Bord abhängig zu machen. Langzeitexperimente wie „Mars-500“ verliefen zwar grundsätzlich vielversprechend, boten aber natürlich nicht die selben Umgebungsbedingungen, da diese nicht komplett simuliert werden konnten. Insbesondere Schwerkraft und Strahlung entsprachen nicht den Gegebenheiten an Bord eines Raumfahrzeugs. Dennoch ist das bisher gewonnene Wissen über das Wachstum von Pflanzen im All auch aktuell und für den Otto-Normal-Verbraucher von Nutzen. Zum Beispiel in der Gentechnik.

[1] http://www.nasa.gov/mission_pages/station/research/experiments/273.html
[2] http://www.biomedcentral.com/1471-2229/12/232
[3] http://www.livescience.com/27868-plant-sex-zero-gravity.html
[4] http://www.spacesafetymagazine.com/2012/09/04/chinese-space-radiation-mutate-food-crops/
[5] http://www.sciencedirect.com/science/article/pii/0273117786900761
[6] http://www.popsci.com/technology/article/2011-03/plants-survive-radioactive-soils-chernobyl-implications-space-farming,
[7] http://pubs.acs.org/doi/abs/10.1021/es100895s
[8] http://pubs.acs.org/doi/abs/10.1021/pr900034u

ExoMars-Deal zwischen ESA und Roskosmos perfekt

Ich merke schon: Über ein spezifisches Thema zu bloggen, hat’s in sich. Während man im Hintergrund noch an einer älteren, längeren Sache bastelt, überholen einen die aktuellen Ereignisse:

Ein Tweet von @FlorencePorcel machte mich gestern darauf aufmerksam, dass die 2003 erstmals angedachte Mission „ExoMars“ nun tatsächlich durchgeführt werden soll. Neuer Kooperationspartner der ESA ist die russische Raumfahrtagentur Roskosmos.

Ursprünglich war diese Mission für 2009 vorgesehen, damals noch mit der NASA als Kooperationspartner. Diese jedoch signalisierte in 2011 finanzielle Probleme und zog sich aus dem Projekt zurück.

ExoMars konzentriert sich im Gegensatz zu Spirit und Opportunity nicht auf geo-, sondern auf biologische Untersuchungen, ähnlich wie, aber mit größerem Leistungsspektrum als Curiosity. Zudem handelt es sich um eine Doppelmission:

Vorgesehen ist, Anfang 2016 zunächst den sogenannten „Trace Gas Orbiter“ vorauszuschicken. Ausgestattet mit Detektoren, Kamera und Spektrometern soll er die Atmosphäre bzw. den Boden des Planeten auf Gase bzw. wasserhaltige Mineralien untersuchen, welche evtl. auf Spuren von (ehemaligem) Leben hinweisen könnten. Er dient darüber hinaus später auch als Relaisstation für die Kommunikation mit dem eigentlichen ExoMars-Rover.

ExoMars der ESA auf der ILA 2006 (Berlin)

Bildquelle: Thomas Hagemeyer

Dieser folgt dem Orbiter in 2018. Seine Aufgabe ist die gezielte Suche nach früherem oder gar noch existierendem Leben auf dem Mars. Da ein solcher Fund auf der seit Jahrmilliarden exponierten Oberfläche des Planeten sehr unwahrscheinlich ist, wird der Rover Bodenproben aus ca. zwei Metern Tiefe entnehmen und mittels einer umfangreichen Ausrüstung analysieren. Im Jahr 2003 hatte die ESA einen Ideenwettbewerb zur Nutzlast des Rovers gestartet. Es wäre interessant zu wissen, ob es einige der damaligen Vorschläge auf den neuen Rover schaffen werden – und wenn ja, welche.

Der Transport von Bodenproben zurück zur Erde ist jedoch nicht geplant. Auch dieser Rover wird, wie seine Vorgänger, nach Ende der Mission auf dem Mars verbleiben.

Bis 2016 sind es nur noch 3 Jahre. Hoffen wir, dass die beteiligten Agenturen und Unternehmen dieses ehrgeizige Ziel tatsächlich erreichen und nicht wieder etwas dazwischen kommt.